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PREFACE

The growth in the speeds and loads intensities at which
railroads are operated demand a further improvement in track
facilities. This important problem can be solved by the
installation of CWR track and long rails in stations
and as part of open track. In evaluating the possibility
of installing CWR track and long rails, and in solving the
problem of anchoring the track against creep, the calculation
of longitudinal forces and displacements is of great importance.
In the present work an attempt is made to fill an existing gap
in this very important area of railroad track analysis.

4

The basic results of this investigation are connected with
the operation of CWR railroad track; however, whenever
necessary they can also be applied to the calculation of lbngi—
tudinal forces and displacements in long rails, and in conven-

tional jointed track.

This work examines from a unified point of view questions
connected with the influence on the track of all types of
longitudinal forces, those produced by moving rolling stock
(creep) as well as those due to temperature changes of rails.
In so doing, the basic viewpoint of examining all longitudinal
displacements simultaneously is adopted.

A. F. Zolotarskii, Assistant Director of the
Institute

V. G. Al'brecht, Head of the Track and Track
Operation Section
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SUMMARY

The work is devoted to the theory of design computations for
track subjected to thermal and creep forces. The theory of
longitudinal forces and displacements arising in continuous welded
rail (CWR) track due to temperature changes is developed. (The
problem is solved in a general formulation which takes into account
the hereditary nature of tie.displacement processes; A solution
to the problem of finding the longitudinal forces and displace-
ments as random functions of distance along the track, is given
in the form of characteristic functionals.) A description of
results of experimental investigations of the operation of CWR
track is given, with the subsequent determination of parameters
and functions which characterize the behaviour of the track

under the influence of temperature changes.

An integro-differential equation, which describes the
relaxation of the 10ngitudinal.forces in CWR track, is 4
derived and solved for different forms of track deflection

and for different tie resistance vs. displacement relations.

Results of investigations of longitudinal forces in
CWR track in the zone of the moving train are presented.
(The equation for longitudinal displacements in a moving
train zone is derived, and its solution is given for the case
of frictional and elastic interaction between the rail and the

rail supporting foundation.)

The work contains an investigation of railroad track
stability. The problem is solved in a nonlinear formulation,
under the assumption that the rail is subjected to passive
distributed tangential and normal loads and bending moments,
without any restrictions on the dependence of these gquantities
on the corresponding displacements.



The work is illustrated by the construction of longitudinal
force-displacement diagrams, which facilitate the practical
application of the formulas presented for the analysis of the

operation of CWR track and of long rails.

The book is intended for engineers, scientific investigators,

and advanced students in institutes of transportation.

This is a translation from the Russian of "Prodol'nve
Sily v Zheleznodorozhnom Puti' by A. Ya. Kogan, published in 1967
as the 332nd issue of the Trudy Vsesoyuznogo Naucho-Isseledovatel'
skogo Institute Zheleznodorozhnogo Transporta, by the Izdatel stve

"Transport".




CHAPTER I

BRIEF SURVEY OF EXISTING METHODS FOR COMPUTING LONGITUDINAL
FORCES IN CONTINUOUS WELDED RAIL TRACK AND
ANALYSIS OF CONDITIONS FOR ITS STABILITY

Because of its technical and economic advantages,
CWR track is at the present time gradually beginning to
replace bolted track.

Bolted rail joints constitute the weakest part of the
superstructure of the present day railroad track. This
explains why since 1884 engineering thinking has been
continuously aimed at perfecting rail joints and decreasing
their number in the track.

The economic superiority of CWR track is determined
by the following factors: decrease in the amount of labor
required for track maintenance; diminished wear of rolling
stock; improvement of electrical conductivity of rail lines;
diminished resistance to train motion; improvement in paséenger
comfort; increased life of rails, ballast, and ties at or near
welded joints, because of decreased impact at these joints.

The initial cost of CWR track is somewhat greater than
the cost of conventional 12.5 and 25 meter rails, but it
is amortized comparatively quickly. The economic problems
pertaining to CWR track have been studied in the U.S.S.R.
and abroad by many specialists. Of particular importance
are the studies by Candidate of Technical Sciences V. Ya. Shul'ge.

Theoretical and experimental investigations of CWR track
have been made and are continuing in the U.S.S.R.

The first experimental section of CWR track was laid in
1933 at Podmoskovnaya, on the Kalinin railroad, by scientists
of the Moscow Institute of Railroad Engineers [38].

Operation of this experimental section has yielded data essential
to theoretical planning and to the solution of practical problems

in subsequent design of CWR track.



Several designs for CWR track were worked out in 1940
at the Scientific Research Institute of Ways and Construction,
but the track was not laid because of the beginning of the
war in 1941. Experimental investigations of stability of
CWR track were conducted in West Germany and in Japan.

Experience in operating CWR track shows that the rail
line is completely stable if specified conditions are observed
in the installation and maintenance of the track. However,
the stability problem has not been solved completely. Cases
of track buckling indicate the existence of certain critical
parameters which determine track stability. It is essential
to determine these parameters as accurately as possible, to
find how they are related to each other, and to construct in
the parameter space the regions of stability and instability.
Theoretical investigations have a great importance in connec-
tion with these problems.

A fairly complete account of the theory of thermal effects
on rails was given by Candidate of Technical Sciences M. T. Chlenov
in his book [38]. 1In 1948 Professor G. M. Shakhunyants proposed
a more refined method for computing thermal stresses in rails,
including the effects of the eccentricities of the forces [39].
Préfessor K. N. Mischenko [25] worked out a scheme for computing
the stability of CWR track based on the energy method. 1In
1952 Cand. Tech. Sc. A. A. Krivobodryi [22] propdsed scmewhat
different formulas for computing track stability. These were
based on the method of integral equations, and differ but
slightly from the formulas of Mischenko, since the only novelty
consisted in the method of solution.

Some questions pertaining to longitudinal forces in
CWR track with automatic stress relaxation were investigated
by Cand. Tech. Sc. M. S. Bochenkov.

In West Germany I. Wattmann has conducted some investigations
[8) devoted to longitudinal forces in railroad track.

In all the studies it was always assumed that all the

parameters and characteristics were constant along the track, and
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were obtained by averaging with respect to the stresses.

In view of the spreading use of CWR track, such an approximate
solution could not satisfy the demands of practice and called
forth new theoretical developments which are continuing to
this day.

Of the recent works devoted to methods of computing the
stability of thermally stressed track one must single out the
dissertation of Cand. Tech. Sc. C. P. Pershin. A number of
proposals were made in this work to improve the accuracy of
existing methods of computation. 1In the first place Pershin
discarded the assumption of constant parameters (obtained
by averaging with respect to the stresses) and instead solved
the problem assuming functional relations between the resistance
of the ties and their displacement, and of the rail fastenings
and their twist. Although the relationships were assumed
to be linear, the accuracy of the formulas was considerably ,
improved and the formulas obtained have a structure fairly
close to that of formulas obtained with nonlinear dependence
between track characteristics and deformations

Of particular importance in Pershin's work is the inclusion
of the effect of initial nonuniformities of the track on its
stability. However, the work also contains some inaccuracies.
Thus, for example, the slope of the curve defining the relation
between the resistance of the tie and the displacement is
assumed to be constant, in view of the assumption of linearity.
On the other hand, this parameter, one of the most important
in determining the zones of stability and instability of contin-
uous track, decreases by a large factor when the ties are displaced
by a few millimeters.

Furthermore, it is not so much the dependence of tie resist-
ance on its displacement in the ballast that is of interest.
Rather, it is the functional dependence between the force
transmitted by the rail to the tie and the displacement of the
rail which is important, since it includes the effect of the
intermediate fasteners. It is guite evident that the displace-

ments of the rail and of the ties 'are in general not the same



even with the strongest possible intermediate fasteners, and it

is the deformations of the rails which must be taken into account
in the computation, since they are the cause of the eccentricities
of the longitudinal forces.

In solving the fundamental problem Pershin did not make a
detailed study of the longitudinal forces in the track produced
by its deformations, and therefore, the relaxation of the longitudinal
forces connected with the curvature of the rails was not taken
into account.

In solving the stability problem for CWR track it has
been customary until now to consider the section of track
which is subjected to thermal stresses only. However, the track
is more likely to buckle laterally immediately in front or behind
a moving train, where the track characteristics can be weakened
by vibrations, which can partially eliminate the forces of dry
friction. 1In addition, rail creepage in the moving train zone
produces longitudinal forces due to the interaction of the elastic
rail with the supporting foundation. The interaction between
the track and rolling stock, connected with the production of
rail creepage, is of great importance and has been studied by
many épecialists in the U.S.S.R. and abroad. The fundamental
work devoted to rail creep is the monograph [1l] of Dr. Tech. Sc.
v. &. Al'brecht. |

The author of the present work has attempted to solve the
problem of longitudinal forces in the moving train zone assuming b

purely frictional and elastic interaction between rails and the

supporting foundation.

Making use of the force~-displacement diagrams constructed
for the moving train zone, once can solve the track stability
problem in this zone. Until now, the horizontal longitudinal
forces acting on the railroad track have been divided into two
categories. To the first category belong all the forces which
arise from temperature changes which tend to altcr the length
of the rails. The second category includes horizontal longi-

tudinal forces produced by the movement of the train, which
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tends to shift the rails in the direction of motion. It appears
to be worth while to attempt an examination of all longitudinal
forces from a unified point of view, irrespective of how they
are produced, based on the utilization of the continuity of the
longitudinal track deformations.

In order to be able to solve problems of stability and strength
of CWR track, it is essential to be able to determine the forces
produced in the track. A great deal of work of Soviet and
foreign scientists has been devoted to this extremely important
question. Particularly important progress has been made recently
in connection with the introduction of wider use of stochastic
methods. The credit for the utilization of the powerful methods
of moder probability theory in the design of railroad track
belongs to Prof. M. F. Verigo [10].

A large contribution to the development of design methods
for railroad track has been made by Professors N. T. Mityushin,
A. M. Godytskii-T. Svirko, K. N. Mishchenko, P. G. Koziichuk,

V. N. Danilov, K. P. Korolev, Candidates of Technical Sciendes
E. M. Bromberg, O. P. Ershkov, and many other Soviet scientists.

However, although methods for computing rail forces due to
transverse loads are well developed, methods for computing
longitudinal forces remain somewhat arbitrary until this day.
Until most recently all the work devoted to longitudinal forces
produced by increasing temperature was based on the assumption
that a uniformly distributed tangential load, due to frictional
forces between the rail and the foundation, acts on the rail.

In view of the increasing use of CWR track, the currently
employed methods for computing longitudinal forces are becoming
inadequate, since the thermally induced forces may reach a
significant magnitude - up to 100 tons and more in each rail line.

In designing CWR track it is also important to know the
magnitude of the oscillations of the ends of the lengths of con-

*
tinuously welded rail, the extent of the "transition" zone,

* Also referred to as the "breathing" zone. (Trans.)



along which the rail cross-sections undergo longitudinal displace-
ments, and the laws governing the variation of the longitudinal force
displacements, and the linear resistance* along the rail line.

In view of what has been said above, one can see the importance
of determining correctly the longitudinal rail forces caused by
temperature changes, or by the simultaneous action of temperature
changes and forces due to rail creep which results from the
rolling of the train wheels on flexible rails.

The laws of variation along the track length of the longitudinal
forces and track displacements are determined by the interaction
of the rails, fastenings, ties, and ballast. These characteristics
change not only with time but also along the length of the track,
in addition to which the character of the changes is, to a large
extent, random.

The random nature of the dependence of the linear resistance
on the point at which it is determined, is particularly evident.

If it is assumed that the resistance does not depend on time, nor
on the magnitude of the displacements of the rail cross-sections,
it will be seen to vary from point to point since each individual
rail tie has its own characteristics, while the reaction of the
fasteners and of the ballast to the displacement of the rail also
varies. Furthermore, the values of the linear resistance have

a large scatter, and averaging them yields values of qualitative

siénifican&aonly. Thus, the parameter values used by different

investigators in computations according to accepted formulas

differ from each other by large amounts. Errors of 30 to 40%

in the determinations of the parameters are considered acceptable.
In general, the linear resistance is a weakly correlated

function which, for practical purposes, can be considered to be

delta-correlated, since the characteristics of a tie in one cross-

section arc practically independent of the characteristics in

* The term linear resistance will be used tc denote the
resistance per unit length along the track. (Trans.)
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another cross-section.

The present level of the theory of stochastic processes
permits a complete solution of the problem posed above. The
theory of stochastic processes is one of the most rapidly
developing branches of probability theory.

Begun by Academician A. A. Markov, who examined discrete
stochastic processes (Markov chains), this theory attained its
definitive formulation after the appearance of the fundamental
works of A. N. Kolmogorov and A. Ya. Khinchin.

The theory of stochastic processes finds its application
in the most diverse areas of science and technology: medicine,
biology, cybernetics, communication theory, theory of elementary
particles, and many others. The application of the theory of
stochastic processes to the design of CWR track may be of more
general theoretical interest since time series are here replaced
by series of fandom values along the length of the track, which,
in the ideal case, can be considered to be infinitely long.t

When the problem is formulated statistically, the construction
of longitudinal force diagrams in CWR track can be related to
the theories of random walks and Brownian motion, which have
been treated quite extensively in modern physics (see Chapter II).

Finally, the investigation of hysteresis phenomena in the
displacements of the rail ends is of great interest in the solution
of problems connected with the design and operation of CWR track.
Many specialists have concerned themselves with the construction
of hysteresis loops when the ends of the rails undergo displace-
ments, and with the investigation of questions connected with
the existence of internal friction in the track. One of the
early, but sufficiently detailed, works is the book of
M. T. Chlenov [38].

Professors G. M. Shakhunyants and V. G. Al'brecht, Cand.
Tech. Sc. M. S. Bochenkov, and many other specialists in the

U.S.S.R. and abroad have studied the construction of diagrams of



displacement of rail ends with temperature. However, until the
present time questions connected with track hysteresis have been
solved under the assumption that the linear resistance acting

on the rail is constant along it. Such solutions can be considered
acceptable for short rails and simple* spike fastenings, in which
case the resistance is close to being constant, and the small rail
length guarantees a small absolute error in the computation of

the displacements of the rail ends.

The fastenings coming into use at the present time ensure
the application of 800 to 1000 kg to the clamps. Under these
conditions the rail is displaced together with the tie, and the
assumption of constant linear resistance is inaccurate.

The application of currently available formulas for the
calculation of the displacements of the end points of thermally-
stressed CWR track, taking into account the fairly large
"transition" zone, is of doubtful validity and can be used to give
only gqualitatively correct results.

At the present time CWR track has become a reality, and to
further expand its use it is essential to have more accurate
methods of computation. Consequently, there arises the necessity
of conducting a whole series of experiments, directed first
of all towards the determination of the statistical parameters
of %he track. A portion of this task was accomplished by the
author during the period 1957-1959. The problems examined in
this book were first worked out by the author before 1962,
and were described in a candidate's dissertation defended early
in 1963.

It is important to conduct precise experiments to determine
how the force transmitted by the rail to the tie depends on the
displacement of the rail. Until the present time only the
dependence of the tie resistance on the displacement has been
investigated. However, this relation does not take into account
the play and the elastic unloading in the intermediate fastenings,
and consequently cannot be used in the stability computation.

The longitudinal forces and bending moments are applied to the

* Fastenings which have no tie-plate and cannot be readily

disassembled will be referred to as "simple fastenings", to
distinguish them from "tie-plate fastening assemblies". (Trans.)

10
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rail and, consequently, it is only the dependence of: the forces
resisting the track buckling on the deformation of the rails
which is of interest, and not the dependence on the displacement
of the ties and ballast.

11






CHAPTER I

THERMALLY INDUCED STRESSES AND
DISPLACEMENTS IN CWR TRACK

l. Derivation of the differential equation for longitudinal
railroad track displacement.
In recent years the investigation of the character of the

distribution of longitudinal track forces, and of rail and tie

displacements induced by these, has acquired more and more importance.

This can be explained primarily by the expanding use of long rails
and of CWR track in railroads in the Soviet Union and abroad.
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Fig. II.l. Temperature induced displacement of the endstof a
string of welded rails
It is well known that in a string of welded rails it is only the
end sections which suffer displacement, the middle portion
remaining stationary, in a stressed state. Let us examine
half of a rail string am (Fig. II.l). Since the mid point will

not move when the temperature changes, it can be regarded as fixed.

Let p(x) be the resistance of the rail due to the supporting
foundation, and Py - the resistance in the joint bars (or in
the rail expansion joints). Let us suppose that the rail had been
laid unstressed, and that its temperature has been raised by
t°. If x is an arbitrary point sufficiently close to a free
end of the rail, then the elongation of the middle section mx,
produced by the temperature rise, will cause the end section of
the rail ax to be displaced along the ties, or to displace the
ties in the ballast. In each of these cases, the frictional
force P, at the end of the rail section a and the resistance

H
from the foundation (i.e. the integrated effect of the linear

13




a
resistance to the displacement of the rail) P = fxp(y)dy over

the segment ax, produce a force P, + PTr which opposes the elonga-

H
tion of the middle section mx. Cbnsequently, along the whole
segment mx and at the point x there arises a compressive force
gt Pnif the length of the middle section

can increase. As long as the compressive force at point x has

P with magnitude P

not reached the value Py + P_ the glongation is impossible
and, consequently, one can regard the rail over this section
as a compressed rod, with the stress increasing in proportion
to the rise in temperature.

When making computation for CWR track and for long
rails it is important to establish the magnitude of the displace-
ment of the ends of the rail strings, the size of the "transition"
zone, and how the longitudinal forces vary within it. To make
the computations it is essential to know the linear resistance
of the rail to longitudinal displacements, which depends on the
displacement of the tie along the direction of the track. On
crushed stone of 25 to 70 mm one can observe an increase in the
resistance when the displacement is 3 to 5 mm or greater. With
a worn spike fastener, the coupling between the tie plate and
the rail base is insignificant. As the rail increases in
lepgth, after the tie has been displaced by 2 to 4 mm, the rail
base begins to slide along the tie plate. The magnitude of the
linear resistance in this case is determined by the frictional
forces and is constant. With heavy duty fastenings, for example,
of type K, the displacement of the end of the CWR track leads
to a continuous change in the linear resistance: the larger
the displacement of a given section, the larger will be

the linear resistance

-] AT == Ak an
|
) t
L0 i (Lraf_

e N S

Fig. II.2. Equilibrium conditions of an element
of a #Btring of welded rails
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Let us solve the problem of constructing the longitudinal
force vs track displacement curve due to temperature changes of
the rails, assuming the most general relation between the resist-
ance of the ties to displacement and the magnitude of the
displacement. It will be supposed that both rail lines are in
the same state, so that the longitudinal forces and displacements
of both rails are the same in every section.

Let us consider an element 4x of a string of welded rails,
located between the center lines of two adjacent ties, and let
us determine its deformation due to the action of the temperature
and of the impressed forces (see Fig. II.2). As is well known,
the elongation of the element Ax due to the temperature change
is given by the formula

A)\t=at AX,

where Ay is the elongation in em due to a rise in temperatufe
of IOL

, o is the coefficient of linear expansion of steel;

t is the rise in temperature of the rail string from the

time it is installed in the track.

The elongation of the same element due to the action of

a longitudinal force P is determined, according to Hooke's Law,
from

1

) 2
where E is the modulus of elasticity of rail steel, kg/cm ;
i 2
and F is the cross~sectional area of rail, cm .
The total elongation of the element Ax produced by a
temperature change of t° and a tensile force P is
_ _ P
AN = AAt+AAP = at + 5F AX. (I1.1)
Since the track is subdivided into equal elements Ax, the
length of each of which is considerably smaller than the "transition"

2one, ratios of increments can be replaced by derivatives. Thus, -

dr __, X _ P
ax T rx Tt R (II.2)

15



Differentiation of expression (II.2) yields

dz i I dpP I AP

dx* TEF 'dx EF Ax’ (II.3)
where AP 1s the longitudinal force transmitted by the rail to the
tie.

The force 2AP, transmitted by the rails to the tie, depends
in general on the displacement of the rails in the section where
the tie is located, and on the initial displacement of the tie A*,
produced by previous displacements of the rails and characterizing
the state of contact between the tie and the ballast.

In earlier investigations [17], [18] it was always assumed
that the force transmitted from the rails to the tie depends
only on the displacement of the rails. Although this relation
was an improvement over previous methods, which assumed a
constant linear resistance, p (x) = const, at the surface of
contact between the rail base and the underlying foundation, it
constitutes only a particular case, appropriate to the first
loading of the system. Averaging with respect to A* yields
results of acceptable accuracy for Iongitudinal forces in
CAR track, but make it impossible to explain such important
phe%omena as the appearance of residual stresses when the tempera-
ture is first raised and then decreased, and the residual displace-
ments of the ends of the rail lengths produced by these stresses.

The quantity 2AP depends on many factors: the degree of
compression between the rail and the tie, the distance between
adjacent ties, their weight, ballast grade, degree of packing of
the ballast, etc.,; however, when the problem is formulated .
statistically, all these factors are taken into account indirectly.
An analytical representation of the result can be put in the form

®*
ap = 2 v (A2 )y (11.4)
2

*
where Y(A: A ) is, in general, a random function of two arguments,

16




ly -

determined statistically by analysing experimental results.
Substitution of (II.4) into expression (II.3) yields an

equation for thermally induced longitudinal displacements,

S '
: YA e i) (I1.5)

dx* T 9FEF Ax

The relation (II.5) characterizes a random process of track
displacements produced by temperature changes. Since the deriva-
tive is the limit of the ratio of the increment of the function
to the increment of the argument, and the mathematical expectation
of the difference of two random quantities is equal to the differ-
ence of their expected values, the operations of differentiation
and taking the expected value can be interchanged. Consequegtly,

taking the expected value of equation (II.5) yields

LA BAMA 1 "
Mk _EME L Me 0., (II.6)

where

[~ -]

Mo, ) = § 9 (b 2" [ig0., 29)1dg (b A%),

—00

(I1.7)

*
where f[¢(Ai,Aj)] is the probability density of the random
. *
variable ¢(Ai,Aj), which can be considered statistically prescribed.
Since formula (II.6) determines the mean value of the random
. * *
variable ¢[A(xk),A (xk)] = ¢(Ai,Aj) for every value of x = Xy
R . . *
and the probability density f[¢(Ai,Aj)] is given, the process

*
P(X) = ¢[r(x),r (x)] is completely determined.
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The process is completely described by the characteristic
functional [30], defined by

I}‘p(.\')p(x)dx (11.8)
g, 1 ()] -—v-Mlc ’ ]

P 4
T —Jutnrptode
_—.:Se 0
-0

Ao M (), M ()1} dex),

where i = /=1, is the imaginary unit; u(x) is an arbitrary
function.

Let p(x) be a linear combination of n = [x/Ax] é6-functions;
here [x/Ax] denotes the largest integer less than or equal to
X/AX. Then ‘

) = ) = M8 (e— n &)

[ <]
d(x — nAx) = je”“”@”dh

1
2n
Taking into account the properties of the é-function, we

obtain
?

\ Pl w0 (50
g, 1 (x) =M[e ot J

Il- * n
[zzpnfé(x——nAx)poodx] [,zpnMnA”]
el "o =Mle!

(IT.9)

The quantity gp[p(x)] is the characteristic function of an
n-dimensional random vector p, with components pl(AX), pz(ZAx),
. pn(nAx).
It is evident that except for the multiplying constant

1/ax, the random components of the vector are
forces transmitted from the rail to the tie at the

8




discrete set of points x = Ax, X = 24X, ..., X = nAx. Thus,
in replacing the discrete process by a continuous one, its
statistical properties are completely preserved.

If a random function &(x,x*) is considered prescribed,
its variance is determined by a (nonrandom) function of the
arguments A and A*, so that 3y = aw(x,x*), or, going over to

the variable x, we obtain

Dy (0) =2 -5 00 1A (), A" (9]

[}

From their nature, the quantities Axp (nAk) and Axp (max)
are uncorrelated since the mean value of the random
variable w[k(mAx),k*(mAx)] does not depend on the value
taken on by the random functioﬁ w{k(x),k*(x)] at the point
X = nAXx.

In view of the above, the covariance matrix of the

n-dimensional random vector Txp takes the form

D,,,(Ax) 0 0 0 i
0 Dy (2040) 0 .. O \

iR pax (i AX, ] Ax)]= 0 0 D,;,(3)y) ... O
0 0 0 ven [)ng(fll.\.\’):

Now, let us examine the random function P(x), which represents
the longitudinal forces in the track. It is evident that the
magnitude of the longitudinal forces in the section x = nax

can be computed from the formula

P(x) = P(0) >.“ (k Ax) Ax. (11.10)
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The process under examination splits up into two. The first
one, P(0), is preécribed and represents a random variable with
the characteristic function gP(O)(v) = M[exp ivP(0)], where v

is an arbitrary parameter. Since the random variables ol(A X),

92(2AX) IR (gax) are independent and have the

characteristic functions (II.9), letting Hy=Ho =ecee= uq = v , and
taking into account the fact that when independent quantitites
are added their characteristic functions are multiplied, one can

compute the characteristic function of the random variable P(gax):

q
gPWM)(v) o gl'(”)(v) n gl.r;.'(v)'
S (II.11)

If the characteristic function gP(qAx)(v) is known, one
can use the inversion formula to determine the distribution

function of the random variable P(gAX):
o

1 - .
F[P(q Ax)] -z ﬂ \ pivl (a “)g/’(qu)(\') dv, (II . 12)

o«

The distribution function for P(gAx) can be determined
by ﬁaking the composition of the ‘distributions of the gquantities

in (II.10).
F[P(O)] = Fy, [lAxny(AY)) .- [y,

Letting
FENMYa, (230)] fa, .., [L\.\‘pq (g Av)] - [(I,
we obtain FIP(qAO] Forfrwfon favo ], (I1.13)
with frefy= § Fi@xpe— Ava) [, (Axp) d Axs, -

o
== { (@) (A, — Axa)) didsg,

-~
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Formula (II.13) is cumbersome for computing purposes, and
it is somewhat simpler to compose directly the distribution laws
of flaxp(kax)] ; however, the moments of P(gax) are easy to
compute once the characteristic function of (II.ll) is
known.

Indeed, expanding gP(qAx)(v) in a Maclaurin series, we obtain:

I3 ~ ‘V’ n v’i ’
g @on® = s (1 8 OV +8r, O g7+ o+ gra(0) +‘. ..

where 0 |
gr (O = [ FIP(qan1dF (P (g A0

—c0

gr,(0) = § P80 F[P(q 801 4F P(gA);

-

avt va=0

—co

25 (0) = S (5" enp(qm) F [P (g Ax)| dF [P (q Ax)].. ‘
q

Consequently, ® ({v)" aty

8pqan™) = i nl

where ®ng is the n-th moment at x = gAx.
Using the last equation, we can express the moments of the

distribution by means of the coefficients of the expansion of
9p (gax) (v) :

Cng = i“"g(,';"()q-_,,)(v) (I1.14)

Knowledge of the first three or four moments is sufficient
for practical purposes, and the first two moments have the greatest

significance.
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The covariance matrix of the n-dimensional vector ?L , with
components Axgpi(iAx) PR Axgpk(kAx), can be computed directly,
taking into account the fact that the covariance matrix of the
n-dimensional random vector Axp is known.

The formula for the covariance of a sum of random guantities
has the form [30]:

Kp, (mAx, mAx) = 5 ¥ K(iAx, j ), (II.15)

{=1 j==1

Thus, the required covariance matrix has the form:
”KPp (mAx, nAx)| ==
I)A 1\ (A.\') D_\XF (A.\') [)_\)\r‘ (Z\.\') I)A,\'.': (\\‘) y
2
F Dy, ((A%) X D, (i A)
1

e

w —[_\/c.v _.[

2

Dsy (Ax) X Dy, (£ Q)
]

3

2
Dix, (A%) X Dy (iA%) 3 Dirp (1AX) X Dy (0 A)
1 1

2 4
Dy (Ax) XDy (EAx) X Dy (EAx) 33D, (1 Ax)
1 1 ]

2 3 n
Dy, (Ax) 2;, D,y (i Ax) 2}] D, (i AX) DDy Av)
i

The variance of the random variable P(gax) with x = gix,

’
taking into account (II.10), is given by

q X '
Dy (x) = Dp (0) 4 D, Dy (i A) A x= Dp(0) - § D, () dx, (I1.16)
{==] 0
where Dp(x) = (l/Ax)DAxg(x).

Instead of the covariance matrix, it is convenient to use
the correlation function considering the process to be continuous.

Making use of the commutativity of the correlation function, we can

write r.
Dy(x)dx - Dp (0)  upn x> x,
K” (xh XQ) = x
[g Dy (¥)dx |- Dp(0) npu v, < x,. (II.17)

by analogy with (II.16).
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The general form of this function is shown in Fig. II.3.

Fig. II.3. Correlation function Kp(xl,xz) of the process
of variation of the longitudinal forces along the length of the
track.

Making use of the functional relation between the correlation
functions of integral and differential random processes, one dan
show that the correlation function of the process p(x) is given by:

02 Kp(xy, x2)

Koln )= g™

Taking into account the relation

0K p (x4, X2) - [ 0- np - Xg > X
0x, D, (x2) - upit xp < Xy

and making use of the integral representation of a step function,

=) 0 CMPH Xy >'x1
D, 6 (xg— x))d =[ !
ES b (X1) 6 (X9 — x1) dx; lDe (x2) upn xy<xy

and of the symmetry of the correlation function, we obtain

K, (xy, x2) = Dy (%)) O (xy—xy) ==
Co= Dy (xy)d (X1 — X3).

Thus, if we consider the procegs p(X) as continuous, the

(II.18)

external influences must be regarded as a series of elementary
impulses of infinitesimally short duration.
In the special case when Dp(x) = Dy the correlation

function Kp(xl,xz) depends only on the difference Xy = Xy and not
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on X; Or X, separately. Processes for which the correlation

function satisfies these conditions are stationary in the restricted
sense. A special feature of stationary processes is the possibility
of expanding them with respect to the spectrum of frequencies.

It is well known from the theory of stationary random processes
that the spectral density can be expressed in terms of the correla-

tion function by means of the relation.

[o o]
. 1
SP ((l)) = é’i 5‘ KP (x: -—_ xl) e—le (—x) d (.Vg e xl).
—c0

Substituting the relation Kp(xl,xz) = DOG(xz—xl) just obtained,
results in
D, [ D
S, (w) = 5111' S‘ 8 (xa—xJe— it (X — ) = -}r‘f.
~—00
*
Thus, when D (x) = DO , the random process p(x) represents

"white noise".

It should be noted that viewing the processes p(x) as continuousf
has a significance beyond the’mere fact that such processes preserve
the &ttatistical characteristics of discrete processes. For.
example, in examining a track on a continuous foundation, it is
found that the approximate relations become considerably more
accurate and permit a deeper understanding of the physical nature
of the processes. A process, which has a correlation function

of the form (II.18) is said to be delta-correlated, or uncorrelated.

For an uncorrelated disturbance,

Kp (%1, %2)
the mean square value is infinite, which
is evident from (II.18) if we set x;= Xx,. %}/%
Consequently, such a disturbance has _____i-_m_ :
infinite energy. This result is a mg' e

consequence of idealizing the proper-

Fig. II.4. Correlation
ties of the actual disturbance.

function K (xlxz) of the
process of variation along §
the length of logitudinal
24 forces per unit length.




Porve

ted Let us note that an uncorrelated disturbance can create a finite
‘te

:.ty response only if its mean square value is infinite. In order to

understand this, let us introduce the notion of specific energy

es of the disturbance, by which we will mean the energy developed

by the disturbance in a given section. If we now regard the

disturbance as a succession of contiguous elementary impulses

(with the amplitudes of the separate impulses uncorrelated), the

graph of the correlation function for the case Dp(x) = D, = const

d, will have the form illustrated in Fix. II.4. The area under the
curve represents the mean specific energy of the elementary impulses.

Finally, let us examine the random function i (x), which

represents the lorgitudinal displacement function along the track.
¢

In accordance with (II.l), one can write

. Ax q‘ ;
AMgAy)y=A0) -} alqgde- w5 N Py(kdx). (I1.19)
10us EF am k

The above process splits up into three, the first of which,
A(0), is given and represents a random quantity with the character-
istic function gx(o)(v) = M[exp ivA(0)], while the second is a
nonrandom furiction of the argument x = gAx. The covariance matrix

of the third process Ap = (Ax/EF) % P, (kax), which represents a
1

sum of dependent random quantities,. can be determined, Ly analogy

ted. with (1I.15), by means of the relations

Kopn B0 =5 3 3 K, (v ) - (11.20)

m lnr_
a R m n
:(Ax) Zz/}-’ K ({ Ax, j Ax).
m 14

Instead of the covariance matrix, it is more convenient

€ in practice to use the correlation function KA(xlxz), which can
ong
al
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be determined directly from the correlation function KP(xl,xz),
recalling that the latter describes a differential process with
respect to the process of displacements. Letting Q represent

the domain of the values of the arguments xland Xy 4 WE obtain,

in accordance with (II.17),

Kyp (%1, Kp (%1, x:) dx, dxy =

(EF) Y (11.21)

%21 Xy Xy
(EFVSJD ndxmf{DpthF ¥,y

+ % bF Kpoypo) X1 + EF pr(O) p(0) Xz -
+Dip(0)  mpn x> x

Xy Xy

(EF)zijp(x Ydxdx 4- D,:(O)(EF) _ X1 X2 +

+EF Kp (o), 2p (O)Xz+ pr . P (0 X1 -
+DAP(O) npn xp < Xy

It is easy t h i =
asy to show that the quantity KP(O),AP(O) KAP(O),P(O)

represents the covariance of the random variables P(0)
?
and A;(0). Indeed, taking the partial derivative of (II.21) with

respect to X0 we obtain

X

D, (x)dx ! "‘”A - K

(_[‘- [‘) (r I) E-‘I—I' CITRITN
(l
(‘){)— K)AP (xl, ,\’2) e . “I)ll X2>.\-1 ‘
A l 3
Xy N e Droo -
—Zae ) (W) d o) STE
([;F}-J e (el (L1 ! AA(U).Z.-'F/'((')
e xy << Xy
or, letting X=X, = 0,
2 Kip(0,0) - K K
0x, Ap Vs Y, ' AT PR Lp (0N, T/ Py
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0)

on the other hand,

pr (1, X) = —M [Ap (x1) Ap (x2)] =
— lim [ M [AP (% + h)p (-\'e)] M) e (x)] } _
R0 h )
- M [“m Ap (xy - I)—hp (\’]l (A'z)] _

h~0 h

[ 9 1
=M[a—xl‘(7w(;¥x)7~p(xz)}J:~ [ P(h)’»(xz)] Kp . (x1 1),
EF
i.e. the partial derivative with respect to the xlof the correlation
function of the process Ap(x) is the correlation function of
two processes: P(x)/EF and i(x). In the special case when
X = X, = O, we obtain

Ki,,, 00 =K,

EF F P(o) 1p(0)

where K = K is the covariance

P (0) /EF, A, (0) AP(O),P(O)/EF '

of the random quantities AP(O) and P(0)/EF. It is completely

evident that the same result can be obtained by differentiating

the correlation function KA (xl,xz) with respect to Xge In particular

P
the covariance is zero when the random variables AP(O)

and P(0) are independent. Finally, it is easy to see that the

guantity DA (0) in (II.21) is the wvariance of the random variable

P
AP(O), which is easy to verify by setting X; = X, = O in this formula,
anc taking note of the fact that DA (0) = K, (0,0).

P P
In accordance with expression (II.21), the variance of the

random function X (x) is equal to

~

D, (x) = S‘S D, (¥)dxdx 4 T I(T)) A 2K p o @ XL Di(0). (11.22)
0

X
LTy
(Ery

In the above formula, the subscript P on A is omitted since .

the total displacement process consists of two processes: the



random process AP with variance DA (x), and the nonrandom one
I
A (x) identically equal to zero, so that
t
D.(x) =D, (x) +D (x) = D, (x).
A AP At )\0

In the same way, one can omit the index P on A in (II.21),

At(x), with variance D

since the correlation functions of the sum of two random processes
are added and, at the same time, it is known that KA (xl,xz) = 0,
t
Sometimes it is more convenient to use normalized correlation

functions of the form

K, (x4, X3)

R, (xy, x,) = ,
4 ( 10 X2 VKP (x“ xl) KF (xz' xz)
Gy, X Kp (x5, x5)
R (xy, x2) — ,'
P («\1 X) V %, o) K,,_(xm =
Ry (xy, x3) == Ki (21, 2y

VKl (1, Xy) Kx (%2, x3) .
' Fig. II.5. Normalized correla-

tion function R, (x,,x.,) of the
process of varigti n 6f longi-
tudinal forces along the length
of the rail
The general form of the normalized correlation function of the
progess P(x) is shown in Fig. II.5. Since the random variable
¢(Ai,A;) depends on very many faétors: the extent to which the
rail is pressed into the tie, the weight, height, and width of
the tie, the distance between the ties, the quality of the ballast
and the degree of the packing, the dampness of the tie and of the
ballast, the air temperature, the presence of clay particles in
the ballast, and many other factors of approximately eqgual impor-
tance, there is every reason to suppose that this quantity has a

normal distribution. This hypothesis is substantiated by a series

of experiments conducted by the author.
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If one assumes the random variable ¢(Ai, A;) to be normally
distributed, it follows immediately that the centered process po(x)
is Gaussian, i.e. its n-dimensional probability density is normal
with respect to the variables pl(Ax), 02(2Ax),...,pn(nAx) and

can be computed by the formula [30]

fl. 2....n [.nl (AX)' (2 (QA\)v ey by (n \\)]

1 A ;
o e €Xp (._—§ > K“'/ gi (P M) o (/ A,\')) .
@ % VK] =

(I1.23)

The quantity |Kq| is the determinant of the correlation matrix

|B0Ax(iAx,ij)| . The quantities K;ij , which are elements of the
matrix inverse to the covariance matrix is obtained by solving the
2

n~ equations
0 npuisE*k

n
/§1 K""/ K‘T"’l‘ = [l npu i =£k°
Since the sums of normally distributed quantities are also

normally distributed, we can conclude that the centered processes
P°(x) and 1°(x) are also Gaussian. Its n-dimensional probability
densities can be determined from expressions, analogous to formula
(I1.23), for the n-dimensional probability density of the process
p°(x) replacing the covariance matrix lkpr(iAx,ij)Hand its

elements by the matricies ||KP (max,nax) || and [[K

(sax,rax)||
p -]

A
and their elements.

A random process is completely characterised by its character-
istic functional. Since the processes are normally distributed,

their characteristic functionals can be computed by means of the

formulas [30]
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i .
Ip (x) My (x) =58 (X) (x') Ky (v, x7) (II.24) S€
gl (0)] == ¢ = 3
p(x) Mj.(.t)-—-?lx(.\') ul(v)y Kp (x, n’). th
gr [P' (x)] =e ¥ '
1
Ip () Mylx) =i (xh o (67 K (v, x0)
alpx)]=e 2 - pe

. ch
Here ¢(x) is an arbitrary function, particular forms of which

tc
determine all the distribution laws of the random function. 1In
the special case when ¢(x) is given to be a combination of

n = [x/Ax] §-functions, the first equation of (IT.24), after

inverting by means of the Fourier integral, yields the n-dimensional

probability density of the quantities pl(AX),...,pn(nAx), described

by (II.23), the second equation yields the n-dimensional probability
Fr
distribution of the quantities Pl(Ax),...,Pn(nAx), and the third
th
equation, the n-dimensional probability density of the quantities
ne

Ay (Ax), Ay (2AN), . A, (n AY).
pr
In conclusion, let us note that the random variables eq

' *
¢[A(x1),k*(xl)] and ¢ [A(xz),k (x2)] may be statistically related. tF

Indged, the track may contain two types of ties, for example: pr
old and new ties, each of which has its own random function of
the tie resistance to displacement. Since the old and new ties occur
randomly on the track section in use, in addition to the probability
of occurrence of a new tie, determined by the fraction of the new
ties in the section, we must consider the probability of transi-

tion from a new tie in section x to a new tie in section x + Ax,

which we will denote by g. Corresponding to this, the probability

of transition from a new tie in section x to an old tie in
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section x + Ax will be equal to p = 1 - g. Under these conditions,
the probability of occurrence of resistaﬁce characteristics
pertaining to new ties and to old ties are connected by a Markov
chain. If the characteristics ¢(A,A*) are classified according

to more than two criteria, the probabkility of transition from

a tie with characteristic ¢i(x,x*) in section X to a tie with

characteristic ¢j(x,x*) in section x + AxX is determined by

el a Markov chain with transition matrix m,= ||pij | ¢(i,3 = 1,2,3,...,n),
4 where n is the number of criteria used to classify ¢(A,A*).
.Zét Let L. denote the matrix of transition across m ties.
e From the theory or homogeneous Markov chains [9], is is known
that this matrix is related to the matrix of transition to the
) next tie by means of L n? . For practical purpoSes the
probabilities of occurrence of any of the n functions ¢i(x,§f) are
equal after a passage across three ties. Consequently, in practice,
d. the linear resistance can be considered to be an uncorrelated
process, as noted earlier.
occur
lity
W
ty
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2. Solution of the equation of longitudinal track
displacements for the case of the first temperature
rise after the continuous welded rails are installed

in the track

For the case of the first temperature rise of the rail strings

*
after their installation in the track, it is evident that A (x) =
which corresponds to the absence of previous tie displacements
from their neutral positions. Consequently, (II.5) takes on the

form

g;;=:'§g%ja;¢(l’o) (1I.25)
To determine the function y(A,0) it is necessary to know
two relations: the displacement resistance wl(Gl) of the tie
(here 61 is the displacement of the tie in the ballast), and the
resistance w2(62) of a pair of intermediate fastenings located
on ?ne tie to the displacement of the rail along that tie (62

is the displacement of the rail with respect to the tie). It

should be noted that 6, + §, = A.

1 2
Fiqure II.6a shows the form of wl(él) for the case of wooden
ties of type IA, crushed stone ballast, and distance between ties

AX = 55 cm; Fig. II.6b shows the same function for wooden ties

of type IIA, sand ballast, and distance between ties 4x = 55 cm.
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Fig. II.6. Realizations of the random process of tie resistance

to displacement along the track in the form of functions of

displacement (Ax = 55 cm): (a) ties IA, crushed stone

ballast; (b) ties IIA, sand ballast.

The heavily drawn curves represent the expected value of the
function wl(él). The graphs show that the rate of growth of the
displacement resistance of the ties decreases with the growth of

the displacement, and that the resistance reaches a maximum yalue

for some displacement GJ = 6lmax' and stays approximately constant

as the displacement is increased further. This critical state is
characterized by the formation of a sliding surface in the ballast.
The resistance to displacement of a single unloaded tie consists
basically of the resistance due to the lower bed and of the resist-
ance to displacement of the ballast in the tie crib. Consequently,
the tie dimensions and the degree of packing of the ballast in the
tie crib have a large influence on the resistance to displacement.
In addition to the factors indicated above, the dimensions of
the tie crib play a decisive role. For a sufficiently large tie
crib, a displacement of the tie results in a displacement of the
ballast prism ABC (Fig. II.7), where the sliding surface is
determined by the condition of least resistance to displacement.

Usually, the angle aq of the sliding surface is about 30-33°. -
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If all the ties are fastened to the rails in the same way
(which is true, for example, for the case of a multiple component
fastening of type K, or for a simple fastening if the rails are
anchored to all the ties), a decrease in the distance{between
the ties leads to a decrease in the resistance. Indeed, Fig. ITI.8
shows that even with the same sliding angle a, as before, the
volume of the displaced prism and the sliding surface area decrease

because of the preceding tie. Actually, the angle ey decreases,

which leads to a further decrease in the tie resistance.

TR DO D
— ‘ |

Fig. II.7. Formation of a sliding surface in the ballast
if the displaced tie is sufficiently far from the preceding one

Fig. II.9 shows the relation between the magnitude of the
tie displacement along the track and the expected value of its
resistance to displacement in medium grain sand ballast for

4

different sizes of tie crib. The curves are steeper for larger

sizes of tie crib.

Fig. II.8. Formation of sliding surface in the ballast
if the displaced tie is close to the preceding one
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8 % Fig. II.9. Mathematical expectation of the displacement
’ resistance of the ties vs displacement. (1}4%275 cm;
(2)ax = 55 cm; " (3) Ax = 50 cm
:Lse When the distance Ax between the ties exceeds 70-~75 cm, the
ballast is pushed out according to the scheme indicated in
Fig. II.7. Consequently, the function Wl(Gl) has the same form
. for all cases where the distance between the ties Axz 75 cm.

If the track is anchored against the action of longitudinal
forces in sectioné, these forces are not transmitted uniformly
to the ties in each section, as a result of which the average

e ‘utilization of the displacement resistance of each tie is
decreased. Experiments conducted at the Moscow Institute of
Railroad Engineers show that if the displacement resistance of
a single tie is taken to be 100%, the resistance of an anticreep

section consisting of two, three, four, or five ties will be

considerably less (Table 1).

Table 1
r-‘
Number of ties Resistance of the section Average utilization
in section to displacement as a per- of the resistance
centage of the resistance of each tie in the
of a single tie section,
1 100 100
2 156.6 78.3
3 202.2 78.3
4 244.8 61.2
5 298.5 59.7 -
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The maximum resistance of a three tie section corresponds
approximately to the resistance of two independently operating
ties. The resistance of a five tie section is approximately
equal to that of three ties, each equipped with an anticreeper.

These data are corroborated by practical experiences with
track anchored against creep.

In computing the longitudinal forces and displacements
in track fastened against creep in sections, we must take Wl(dl)
to be the resistance of the tie section divided by the number of
ties in the section. Similarly, W2(62) must be understood to
represent the resistance against rail displacements along the
track from the fastenings and anticreep devices in the tie
section, divided by the number of ties in the section.

The resistance of the tie to displacement depends vitally
on the degree of packing of the ballast. The importance of
tamping the ballast in the tie cribs for track operation can be
deffonstrated by determining the resistance after tamping the
ballast, and after packing it by tramping on it. -The maximum
resistance in the second case is only about 70-80% of the resist-
ance after tamping.

Let us note that in the absence of vertical loads the tie

resistance usually fluctuates in the following ranges: 800-1000 kg

per tie in crushed stone ballast, 600-800 kg per tie in sand ballastQE
Let us examine now in greater detail the function Wz(éz),

which represents the resistance to displacements of two_rails over

a tie. This function depends chiefly on the degree of compression
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between the tie and the rail and on the quality of the anticreep
devices, which is determined, in turn, by the type of intermediate
fastening, the type of rail anchor, and also the quality of track
maintenance. 1In a multiple component clamp fastening, which

assures a pressure force on each clamp of 800-1000 kg, the force
necessary to displace two rails over a tie exceeds 1000 kg. Under
these conditions the tie will be practically displaced together
with the rail, and the function ¥(1,0) is determined with sufficient
accuracy by the dependence of the resistance of the tie to displace-
ment, Wl(dl)z Wl(x). With a worn spike fastener, the force needed
for the displacement of two rails not fastened to the tie by rail
anchors, does hot exceed 200-300 kg. When 61 reaches the value

¢

) there will occur a sudden displacement along the surface

Imax’
of cohtact between the rail gnd the tie (tie plate), and if the
force is increased, the rail will be displaced with respect to
the tie.
To construct the function ¥(A,0) from the graphs of Wl(dl)
and WZ(GZ) one can use the following method. Assuming a certain
value of the force Wi(ki,o) transmitted from the rail to the tie,
let us compute the displacements 814 and 654 produced by this force.
The sum of these displacements yield the total rail displace-
ment, X = Gli+52i’ Thus, for every value of the function Y¥(i,0)
one can determine a value of the argument A, i.e. the graph of

the force transmitted by the rail to the tie vs. the rail displace-

ment is completely determined.
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It should be noted that the function WZ(GZ) assumes not only
the existence of dry friction between the rail and the tie plate,
but also takes into account the play in the fastenings, the elastic
unloading of the bolts and screw spikes, the compression of the
wood under the rail anchors, and many other factors, so that
w2(62) is, in general, a random function with a nonlinear
mathematical expectation. An especially large effect on the spread
of the values of w2(62) is produced by the nonuniform pressure
of the clamps and the fastening spikes, and also of the rail anchors
along the track. Consequently, the determination of the random
function ¥(A,0) from the random functions wl(él) and W2(62)
presents certain technical difficulties.

The author has conducted a series of experiments to determine
directly the graph of ¥(A,0) for a t;ack with wooden ties of type
IA on crushed stone ballast, with fastenings of type K, and
also for a track with wooden ties of type IIA on a sand ballast,
wigh spike fastenings and with the track anchored in sections
against longitudinal displacements (five ties to a - section).

The general form of these functions is shown in Fig. 1I.10, a

and b.
o yf.'x,o),kg—r— ;77 by, gk
500 7 (,é; ] 600 | — |
/]
v00 f- 400 |-
200 _ —_— 200 |.
¢ 5 10 15 Amm 0 5015 A

Fig. II.10. Realizations of the random process of force

transmitted from rail to tie vs rail displacement (Ax = 55 cm)!

(a) ties IA, crushed stone ballast, fastenings of type K
(b) ties IIA, sand ballast, aimple fastenings
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Comparing figures II.6b and II.1l0b, it is evident that
for the track with spike fastenings, the graph of the function
¥(1,0) is less steep than the corresponding graph for Wl(Gl).
This can be explained by the fact that the same longitudinal
force, transmitted from rail to tie, produces simultaneously a
displacement of the rail with respect to the tié, and a displace-
ment of the tie with respect to the ballast. For a track with
fastenings of type K, the difference between the graphs of
¥(x,0) and Wl(ﬁl) is less noticeable. This is explained by the
circumstance that the tie is displaced together with the rail.

For a fixed value of the displacement Ai’ the random
fuction ¥(x,0) is transformed into the random variable Wi(Ai,O),
the distribution for which can be obtained from experiments ;n
the usual way without any difficulty. The author's experiments
show that the distribution of the centered random variable
W;(Ai,O) is close to normal. The fact that the random variable
W;(Ai,O) consists of a sum of at least ten different factors with
comparable weights can serve as a basis for the adoption of the
normal law for its distribution. Since the random variables
W[l(xl)] and W[A(xz)] are uncorrelated, it is sufficient to know
the variance 3Y¥()) for every value of A in order to characterize
the random process p(x) completely.

Let us return now to the previously obtained equation (II.25)
Taking the expected value of (II1.25), we obtain

a M, 1
= gy Me (. 0). (II.26)
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Equation (II.26) can be integrated by quadratures. Indeed,

multiplying both sides of the equation by 2(dMA/dx), we obtain

M, a2 M, 1 dM r

— ) — L S—— 0
2‘dx dx? EFAx b )

or, in terms of differentials,

dMiy? | (. 0) dM;
d( dx) = fFar k. 0 dM,

from which
My

("’_M*)2 - -ﬁ,'_j-; j Mg (h, 0) A cy.

{)4

One can solve the last equation for the derivative

M e i
o B Tr?\?j My (A, 0)dM, -1 ¢, .

M,

Separating the variables in this expression, we obtain

My

x + 02 T g Ai;"—"'?;};_‘: TILLIII I I T T e

]/ ”A g My (A, 0)dM, - ¢,
? My,

For boundary values we must take the following:

dM,

) Mp
! dx

= al -}- EF

X=X,

My

=20,

X=3Xxg

x==x,

Physically, these conditions are a reflection of the fact
that at a fixed point X the expected value of thelongitudinal force
is given by MP = =-qtEF. The minus sign indicates that a
positive temperature increase in the rail produces a compressive

force. Finally,we obtain

T , ‘ (II.27)
MP :-..‘.- W‘Y M\I’ (7\,, ()) (cﬂ{:\ — at[.r,
0
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- (II.28)
]/EFA fop(A O)de |

Equation (II.27) relates the expected value of thelongitudinal
force to Ehe magnitude of the longitudinal displacement at the same
section.

Taking into account the fact that thelongitudinal force at
the end of a rail string is equal to the resistance against the
displacement of the rails from the joint bars (rail expansion joints),
MP=PH’ one can easily obtain on the basis of (II1.27) the relation
between the temperature rise after the installation of the rail
in the track and the expected value of the displacement A, of the

. &
end of the rail string produced by the temperature rise:

1 Mu P” (I1.29)
t-=—&— ['[‘AA. 5‘ Mo (L, 0)dMD. ]

The resistance against rail displacement in the joint bars

fluctuates between 4000 and 1000 kg.

If in (II.28) we assume MY¥(A0) = ¢ = const, which corresponds
to the case of constantlongitudinal resistance per unit length,
and if we take as the origin of the coordinates the fixed point

X, of the rail string, integration of the expression yields

M),

_—___—(!lel/‘;[ll'Ax M}::x;
/ My 4

[+
l EFA};'(S 4,

solving the resulting eguation for MA’ we arrive at

41



x 0 x M, (II.30)

M= 5EF*2ax = 2EF
where Mp = (c/248x) is the expected value of the resistance to

longitudinal rail displacement per unit length.

The equation of the expected value of thelongitudinal forces

can be obtained from (II.27):
(I1.30)

My

Mp= EF f My (A, 0)dM. —alEF = l/—-c‘h—alfl"
0

substituting from (II.30) for the value of MA’ we finally obtain

Mp= I/EFCMX —alEF = M, x —atEF. (IT.31)

Finally, the equation (II.29) for our case will take the form

P, (I1.32)

2Mx
b= EF Mo "'au

The general form of the graph of the function t(MA) is

shown in fig. II.Il.

0 HA,kg'

Fig. II.ll. Dependence of the expected value of the
displacement of the free end of a rail string on the rise
in rail temperature.

For our case of constant resistance per unit length, the

variance of the random quantity p(x)Ax is constant, i.e.

D = D A X
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Since the process p(x) is delta-correlated, we find, in
accordance with the results of the previous section, that the

correlation function of the process is given by

Kp(xl,x2)= Doé(xz-xl). (IT1.33)
Let us recall that a process which has a correlation function
satisfying a relation of type (II.33) represents "white noisge",
since its spectral density is constant over the whole frequency
range, from -« to =,
Taking into account the boundary condition DP(O), the correla-
tion function of the process P(x) can be computed according to

(11.17):

: . Do x, npH x, >x j
Kp(xy, x;) = Domin (x,, xz)-.={ 0¥t PR & ~% (II434)

Dy xy npu X, <Xy

The surface described in (II.34) is shown in Fig. II.l2.

Fig. II.12. Correlation function X, (x,,x,)of the process
of the variation of thelongitudinal” rall forces.

Finally, taking into account the boundary conditions DP(O) = 0;

KP(O)/EF,A (0) = O; DAP(O) = 0, we can determine the correlation
function of the process XA (x) according to (II.21):

K s Xy X npy x, > (II.35)
' Do _ TRE e Mk 2 > X
ap (X1 Xp) = 2(52‘)2 Xy % min (g, X,) -- 2(EF) 2 1

'Q_'(L;)‘ Xy X3 npH x, < x4 '
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The surface described by (II.35) is represented in Fig. II.13,

K)(I',,I(,
Iy

I

Fig. II.13. Correlation function K, (x,,%,) of the process
. : . ATTLrT2
of displacements of rail sections

Finally, let us determine the correlation functions of the

processes Pp(x) and A_(x). For the first of these we find, from

P

the results of the previous section

1‘) '(1. X ) — _______K{‘ ("_"l' x"’)_., . _I.-).limiu (-\']v ~\._v)
T VK o ) K (v x2) VDV Dy ;
min (xy, x,) o
= ==, ”.-5“ !
V., % ( ) ’

For the process AP(x), the normalized correlation function

has the form

Ry(xy, X)) = _ Kb x)
v V Ka(xy, %) Ko (v, x2) (I1.37)
D, .
# : (EF)? Xy X, min (g, xy) min(y, )
T ) Dy 2,/ Do 3 Vaxn

Thus, the normalized correlation functions of the processes
P(x) and A{(X) coincide.
Let us go over to cylindrical coordinates. Setting

X /%y = tan o, and taking into account the equation

. l//)i‘- npH X, > X
min (%;, X,) Xy
— - ]

Vs l/ ;%2— pu x, <Xy
1

44




we obtain Viga ‘upn-. 0<a <4y

RP (xlv Xz) == Ry (xl' x2) == V‘m npu 45° <a<90*

o alctgxz.
Consequently, the surface consists of the intersection of
two conoids. Fig. II.14 shows what such a surface looks like.

Ry(1,%,)

I

7] 2,:Tp

Fig. II.l4. Normalized correlation functlon R (xl
of the process of displacements of rail sectlons

X,)

For a track with worn spike fastenings, the expected vaiue
of the resistance per unit length, Mp, is 2 to 2.5 kg/cm, and
the corresponding variance Dy varies from 40 to 60 kgz/cm.

Figure II.15 shows the processes P(x)+otEF and A (x)
computed for the values Mp = 2 kg/cnm, Do = 50 kgz/cm. The solid
lines represent the mathematical expectation, the dotted ones -
the mean square deviation.

Pr)ratERT
20

a) 53

L =5

M)

ARG

b)
o //
2 ’,;yféﬁﬁﬁv
. ‘AL,,,zf"‘y"

[ 020 S0 40 S0 60 20 LM

M)

L -3
VZD»I

N
\\

Fig. II.15. Realizations of the random processes P(x)+atEF

= . - 2.2
and A (x). (a) DP-Dox, (b) DA— Dox /2E"F*“,
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Taking into account the Gaussian nature of the random process
P(x) and the formulas (II.31) and (II.34), we obtain for the

one-dimensional probability distribution [9]:

(Pt EE—~M, 1) o (T1.38)
P' = = e— 2Dy x .
Fib x V 2nD, x
Let us recall that the coordinate origin is at Xy the

fixed point of the rail string. The quantity F(Pl,x)dPl
gives the probability that the graph of the function passes

through some "gap" in the P x plane, as shown in Fix. II.1l6.

1 4h

*xtEF-—{

[ I

Fig. II.16. Passage of the random process P(x) through
a "gap' in the P x plane

If 2 represents the length of the "transition" zone of a
rail string, and Pz denotes thelongitudinal force at the end,
[
then, in view of
dp

o e,

xeil
one can write
F(Pz, 2)dP2= F(Pz, L)p(R)ade = F*(z, Pz)dz,
where F*(E,Pl) is the probability density of the random variable 1%.
At the free end of the rail string, the value of the

longitudinal force satisfies P2= —PH , Where PH is the resistance

to rail displacements in the joint bars (rail expansion joints).
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Consequently, in view of (II.38), the probability density of

the random variable & is given by the formula

_ p (D e_(gzrl+(ﬂEF::ﬂA% —("Eggf“’-%
_V2nDol .

It should be added that formula (II.38) holds only when
t > PH/uEF, since the free end of the rail string does not move
: if the temperature rise is smaller, i.e. g = O.
Let us now compute the probability that 2 lies between

O and a:

PO<I<a)= [ F(Pu Do ()dl=py [ F (P,
[

where pcp is the mean value of the random function p(g) , in‘the
domain O<#&<a.

We can now determine the limit

-

cr : (II.40)
lim xLS‘\ K, (x4, X2)dxydx, = lim D",,'\ == 0,
00 :

The general ergodic theorem can be stated in the following way:
if the expected value of a random function is constant, and the
correlation function satisfies (II1.40), then the mean value of
the random function over the domain O<x<» has as its mean
square limit the expected value of the random function [30].

Thus, .
Pw<1<m:m@JFm"nM

and, differentiating this equation, we find

M;)2 sl PP M AEF—P)2
s -t W)

D= oahi
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Consequently, equations (II.39) and (II.41l) are equivalent

the second one is more convenient since it involves

however,
It is easy to verify that the probability

a nonrandom function.
density of the random variable % has the following properties:
in addition, FO(O;t>PH/aEF)

FO(O;PH/aEF) = »; and,

©(w;t)=0;
= 0. Indeed
. ' 7 ——'zl—-ﬁ,l_
°(0s Pu_ Alim$ : =
F (0' t>°‘EF) 10 Vi
1 .
Al T A
= — = Alim —,,
zlf(l) Vi ,ﬁweﬁv |
' A EF—P .
M, . oM i ’ L
A= P e D, fo CO”St; 1 = ‘/___;
rie onD. ;
— A(Mp)z . (at[T Pu) 0
«= 2D, >0’ ﬁ— 2[ >
or, making use of L'Hospital's rule,
= Alim = = A,l'fll nt’"‘ = 0. .E

Fé(o-, t>a’2") ,,-we
L

one can show that

Furthermore,
[s o]
_;§F°U;0dl:1.

1 é«h<l<:aﬂ=
i ti " zone

which shows that the length of the "transition
Integrating (II.41),

gatisfies

we obtain

with probability one.

O << =
(=]
[P tyar -
AM 2
e (1)
o LF-DPYM ST,
= e( D “)-_ _.._I}.Ih Z;” r u)? “
JV ETIN
or, making use of the notation
M, I

gxawaP“

D,
q“(mﬁr—lmﬁﬂ:>a
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i we obtain

alEF — P,

- S ° t)dz-evM,,V_l/ D Se e

In view of the formula
AN A

)
e 2qe____--.;/2nqe “ .
VE

which can be found in the table of integrals ([33), we finally

oo} ’ 1 —_——
o /sf. N\ s d 1 a’EF-—PH .
JF(I. l}dl'~eqMPWVWA

21D, 1 L
X l/atEF—P..' yap ¢ = b

? which is what had to be shown.

arrive at

The general form of the distribution function of Fo(z;tg is
shown in Fig. (II.1l7).

From an analysis of (II.41) it follows that as the temperature
rises after the rail has been installed in the track, the graph !
of the distribution function F°(%;t) appears to shift in the
direction of increasing lengths of the "transition" zone , simultane-
ously becoming less steep; in other words, as the temperature !
of the rail string rises (falls), the expected value of the
length of the "transition" zone and the variance both increase,

which is quite evident from a physical point of view.

Finally, the determination of the displacement of the rail
end Ao is of great importance in designing CWR track. Let.us
determine the conditional probability of the end of a rail string
with a fixed value of “transition" zone length, taking into

account the fact that the process 1 (x) nas a normal distribution.
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Making use of (II.30) and (II.35), we obtain

M Y] .
1°_;'_1: (II.42)
( 2EF ) (EF)!

|

b (ho/l) = — ==
0

ety | ‘

2222 ﬁ

Fig. II.17. Distribution function of the length of
the "transition" zone for different temperature rises
of the rail string

However, the length of the "transition" zone & is itself a f*

random variable, with a probability distribution function FO(r;t) .

At the same time, it is known from the theory of probability

that a two dimensional probability distribution of the random
variables E,Ao is equal to the product of the probability density

of one of them and the conditional probability of the other one

»

with respect to the first one.

Thus,
@* (hos I; 1) = F° (I; ) D (ho/l) ==
($EF-—P —My 1) (1,_ -Q‘EF_F_. ,-)2
I e T . (I1.43)
EFaD, I’V 2

FPormula (II.43), as well as formula (II.41l) is valid if the
condition Ao<6 is satisfied; here 6§ is the length of the joint
gap (magnitude of the movement in the rail expansion joint),
since we assume P () = PH'
If after the gap is closed there is a further rise in

temperature, the displacements remain the same as they were at

90




the time the gap closed.

The longitudinal force in cross-section x will then be
P(x) = P°(x) + a(t-t_)EF. (II.44)

Here the following designations are used:

P(x) ¢ty = P°(x); t],ms = 1.

It has been tacitly assumed that the averagedlongitudinal
force-displacement relation remains the same, since, in fact, the
track charactqristicé vary with changes in temperature and time.

Now, let us examine the case when the force transmitted from
the rail to the tie grows according to

M¥(x,0) = c + KMA. ¢

Taking the fixed point X, as the origin of the coord;nates,

as we have done in the previous case, we obtain

j‘l/EFAXX(C + KM) dM,

'=]/2ﬁ£‘3" arc (-c’S M, -+ 1).

which yields

P K (II1.45)
M, = W(C“ SEFAT® ‘)~

Differentiating (II.45) and substituting in (II.2) determines

the magnitude of the pngitudinal force in the track:

EF ®.
MP—CI/QKAxSh mx—atEF. (11.46)

51



Relations (II.45) and (II.46) we obtained by the author in
1956 by a somewhat different method.
Equation (II.29) , which relates the displacement of the

end of the rail to the temperature, assumes the form

t=%l/-2751FE[KMﬁ+cMA] —%-&%. (I1.47)

in our case. :

If the experimentally determined function MY ()) is approximated ah
by a third degree polynomial without constant term,

M () = aM? -|- BM} - yM,,
or by the function
My(2) = m_MA", i

the right hand side of (II.28) can be reduced to a tabulated
integral and can be expressed in terms of elementary functions. i
Finally, if My ()) is approximated by a third degree polynomial i
with a nonvanishing constant term, the right hand side of (II.28) |
will be an elliptic integral of the first kind. If the integral 1

thus obtained is transformed to the Legendre form by means of an

uncomplicated substitution [23] and then inverted, the expected

value of the displacement of a track cross-section A(xX) can be
expressed by means of the elliptic sine function (of Jacobi), a
function which has been studied in sufficient detail.
Convenient graphs and tables for elliptic integrals and Jacobian
elliptic functions are available in [33].

We will not explore these solutions further, except to note
that for the case MY(A) = yX, the equation forlongitudinal forces

and displacements was studied by the author in 1956.

52




ed

In the most general case, the integration of (II.28) can be
accomplished by a graphical-analytical procedure, based on the
experimentally determined graph of the function My()A) for the
particular track under investigation. 1In performing the graphical
integration it is not necessary to worry about the case when the
function ¥(A) vanishes for A = 0. 1In this case it is sufficient
to assume Y¥(0O) = ¥(A), where A is the required accuracy in
determining the displacements. With this assumption, the
longitudinal force-displacement diagram does not change for all
practical purposes; it is only the theoretically determined
length of the zone in which the Jongitudinal forces decay which
changes, and thch become infinite for the case ¥(0) = O. ‘

But here anyway, we must for practical purposes take the length
of the decay zone to be the distancé to a point for which the
displacement 2° is zero to withiﬁ the required accuracy.

After the equation (II.28) has been integrated, one can

associate with each value A(x) a value of Dp x(x) = 3v[Ar(x),0].

A
Thus, one can consider the variance of the linear resistance to

be known graphically. 1In view of (II.17) and the boundary condi-
tion DP(O) = 0 (for the coordinate origin we take the fixed point

X, closest to the free end of the rail string), the correlation

function of the process P(x) takes the form

min{xy, x,3)

Kp(ty x)= | Dy(dx. (I1.48)
0

Since the graph of Dp(x) is known, the surface described by

(II1.48) can also be constructed by using one of the approximating
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schemes. Finally, taking into account the boundary conditions

DP(O) = 0; = 0; DA (0) = O the correlation

P (O P

function of A (x) for the general case being considered can be

Kp (o),  /EF

written, according to (II.21), in the form
Xy X

Xq
zE—F? S 5 D, (x)dx dx npu x3 > x;

0
x

: (I1.49)
K)‘P (x.h xz) =

D, (x)dx dx npu x, < x;.

O x @

(EFP§

If the graph of Dp(x) is given, one can also construct the
surface described by (II.49), If the function D (x) is determined
at a sequence of points, x = nAx, x = 2nAx, ...,x = gnax, it
suffices to compute the elements of the covariance matrices
instead of constrﬁcting the correlation surfaces; here g is the
number of points of division of the graphs P(x) and X.(%).

Let us now compute the one dimensional probability density
of the process P(x). Taking into account the Gaussian nature of
the process and (II.48), we obtain
. NS
V 22D, (x)

v ) , .
where DP(x) =(KPx,X) = I;Dp(y)dy and MP(x) is given graphically

F(P, x) =

or in tabular form

In view of the relation

dpP

d‘v = p (l)v

one can write

*
F(P,, 2)dP,= F(P,, 2)p(s)di = F (2, P,)ds,

2’




*
where F (z,Pz) is the probability density of the random gquantity 2.

Taking note of the condition at the end of the rail, P, = -PH
14

the probability density of 2 is found to be
. [M‘p(l)-—P"]‘al

. F* — _p(l)_ S 20p(D
F*(, Py) VarDel e

Here, as in the case of constant linear resistance, the relation
t > PH/atEF must hold.

Let us now compute the probability

PO<I<a)= [ F(P, Dp(Ddl= (II.51)

= [Few nM L [F @ o0l

where p°(2) is centered random function. v
Since Dp(x) is bounded above, one can find an N such that

Dp(x) < N; then

X x
lim —;?SSKP (x5, x)dxydx, <lim ﬁl;» 0,
00

X 0O

i.e. the random function po(z) has the ergodic property.
The second integral in the right hand side of (II.51) can
be reduced to zero in probability,
a l []

§ F(Pu Dp°(dl =My § F(Pw bydl 0.

Finally, the probability density of % takes the form

[Mp(1)-Py 2
FO(I; t) —. Mg_({)~_ e_ 2050 (1) . (II . 52)

"V 2aDp ()

Let us prove that the function Fo(z;t) satisfies the condition

00

P(0<i<o0) zS Fo L by dt = 1.
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Indeed, on the one hand we have

-

[Feu ndi= [ F. Dowdl = | F(P, haP=1;

on the other hand, for all negative x we have
P(-x) =-atEF; o (-x):=0.
Consequently,

0 0

(P ndl = { F(P., ol =0,

—0 —Qu

301”(1; fydl == }om(; 6 dl — fmt-. 0ydl = 1,

which is what had to be proved.

Since the process A(x} has a normal distribution, the
conditional probability of the displacement of the end of a rail
for a given value of the random variable & is determined by

[2e—AL, (1}]?

! T
q) )\, /I —_—— P 7. ;
Ot} vV 2aDb, ()

where

1!
Dy.(l) = [—’FS \ D, () dx dix..
).

0

The gquantity Mx(z) , in view of (II.28) is dctermined by the integral

oM
2 dM, L

l == '—"'—'M‘A Atk ~ L
1 _
‘/ mj My (., 0)dM,
. 0 0

in which the expected value of the length of the "transition"

zone is given implicitly.
Now let us determine the two dimensional probability density

of the random gquantities % and Ao.
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D" (Ao, I 1) == Fo (I YD Ao/l -

[Mpt=P 13 [Fe- ML (O]R II.S53
Mp(l) e 20,,(1)" TN, W ( )

T oV Dr ) D)

*

where, in accordance with (II.27), Mp(l)is determined by

a My ()

'Mpm==l/ Eéﬁrgnwuhmdmp-wEﬁ

e S

Finally, knowing the joint probability density of Ao and &,
let us determine the probability density of Aoe It is known from
probability theory [30] that to obtain the probability density
of one of the variables in a system, one must integrate the
probability density of the system from -« to +« with respecteto
the other random variable.

Thus,

= )
Dy t) = | Do, L0y dl = § @70, 1)l =
0 - [Mp(l)——l(’)"]?- [re-- M (D)2 | (I1.54)

S Ml m e T TR gy,
2n VD[» ) D, )

0

Let us look at a practical case of computinglongitudinal track

; forces and displacements.
yral |

; Computation of longitudinal forces and displacements

E in continuous track

6 2
Rail characteristics: rails of type P50; E = 2.1 x 10~ kg/cm™;

F = 64 cmz, wocden ties of type 1A, 1840 per km; fastenings of
type K; crushed stone ballast. The graph of M¥(}) is given in

Fig., II1.18; the graph of the variance 3¥(X) - in Fig. II.19.
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Fig II.18. Graph of the expected value of the force
transmitted from the rail to the tie vs displacement of
the cross-section
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Fig. II.19. Graph of the wvariance of the force trans-
mitted from the rail to the tie vs displacement of the
cross-section

Suppose the temperature rise after the rails are installed in

the track is t =15°. Resistance in the joint bars, Py =

3060 kg.
First, let us determine the mathematical expectation of the

random functions p(x), P(x%), and A(x), making use of (II.27)

an§ (IT.28) ., Let us take the fixed point X for the ccordinate

origin. Fig. II.20 shows the graphical integration of V(i)

by the method of tangents. In performing the integration, the

polar distance is taken to be EFax, so that the integral curve

defines, according to (II.28), the square of the derivative of

the displacement.
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Fig. (II.21) shows the graph of the function MA,(A),
constructed from the graph of (MA’)Z with the aid of a table of
square roots. It follows from (II.29) that, except for the scale
factor 1/a, the graph represents the expected value of the displace-

ment of the free end of the rail and of the temperature rise

causing the displacement, translated by ty = PH/atEF.
218 ot
2010 ,r’1
16107 ,/’
2 'd
18 . , T fl?@
.y , ; !
g A0
0 I B
Sed ;ﬁ]l AERRARERAR
U<dn S0 W O T I O I O I O
P 0 1 4 &8 N8 Amm i

Fig. 1IX.20. Graphical integration MY (i)

t-ty MaA'

' 4 107 /ﬂ)
3 oo /
510" e
20° < d
.94
0° ///
10 [
1 ¥ 8 12 % A,

Fig. II.21. Graph of MA,(A)
Fig. II.22 show the graphical integration of the function
l/MA,(A), constructed from the graph of MA'(A) and a table of

reciprocals.
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Fig. II.22. Graphical integration of l/MA,(A)

Let us now construct the graph of EFMA,(X). As a starting

point we will use the graph of MA(x), which is represented by a solid

curve on Fig. 1I.23, and which constitutes the graph of x(MA)
turned by 180° with respect to the diagonal of the guadrant. The

differentiation is also performed by the method of tangents, taking

EF for the polar distance.

EFMUT, | HA,m

* 20
8 '
,ﬁJ .
14 .
504 10 7 +or 7]
1 xRN
404 8 73 i
) & SEAREN
20y 4 b———— AN EERER
o
1T FL N
= o R
? 0 m 20 30 40 S50 60 70 80 90xM

Fig. II.23. Graphical differentiation of the function EFMA,(x)
By making use of (II.2) solved for P, we construct the diagram

of the expected value of the longitudinal force along the track

(Fig. II1.24). Taking the mathematical expectation of (II.2), we
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b obtain i
Dp(x)=Kp(x,x)= [ D, (x)dx.
0
Figure II.24 also shows the graph oflongitudinal displacements
of the track. At the point A the longitudinal force is P = Py

i.e. this point is a free end of the rail string. The displace-

ment is maximum at this point.
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H : 0 20 40 60 80 XM

Fig. II.24. pongitudinal force and displacement diagrams
in a string of welded rails: (a) longitudinal force;
(b) longitudinal displacement

Finally, differentiating the graph of the expected value of
the longitudinal force, we obtain the graph of the expected value
of the linear resistance Mp(x). Figure II.25 shows the graphical

differentiation of the function EFMA,.

FEHA' ,
kg/c erma,r
60

(x)

50

40

am
J0

Qs
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QN Pow oy
L

i' Fig. II.25. Graphical differentiation of EFM,,
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Let us note that in constructing the diagrams of the expected
value of the longitudinal force and of the longitudinal displace-
ment according to the simplified formulas, the values of the
parameters entering these formulas should be determined from the
condition of minimal deviation of the approximating function
My(x) from the real one on the interval O ixiko, where Aois the
displacement of the end of the rail string.

In general, the values of the optimal parameters of the
approximate curve My (A) change with the variation of the displace-
ment of the free end of the rail connected with changes in the
domain of values of XA. However, the displacement of the free end
depends on the rail temperature.  Thus, the values of the optimal
parameters depend continuously on the temperature. This is
confirmed in practice: It is known, for example, that the mean
value of the linear resistance along the length of the "transition"
zone of the rail varies with the increase and decrease in the
teméerature.

Now that the diagrams of the expected values 6f the functions
p(x), P(x), and A (x) have been constructed, let us begin to compute
the variances of the processes. Assigning to each value of Mk(x)
the guantity aw(MA)/ZAx = a¢(MA)*, we can construct the graph of
the wvariance Dp(x) of the random function p(x). Figure II.26 shows
this graph, computed with the use of the graphs of 3¢(MA) and MA(X)

shown in Figures II.19 and II.Z24.

* The factor 1/2 is introduced since only one rail line is considered
in the computation.
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Fig. II.26. Graphs of M, (x) and Dp(x)
Making use of (II.48), let us determine the variance DP(x)

of the process P(X):

am,
MP =EFW'—'H‘EF-

Figure II.27 shows the graphical integration of the function

D (x).

p( )
DH/I),k% 2p,12), k92 /cm
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Fig. II.27. Graphical integration of Dp(x)

The graph of DP(x) determines completely the correlation

function of the process, as is evident in Figure II.28.
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Since the process P(x) is Gaussian, the mathematical expec-
tation and the correlation function characterize this process

completely.

Q_ P(1)

T N X
X, o z

bj| Dplx) :

]
1 Ko (X, 17)

Fig. 1I.28. (a) The random process P(x) and (b) its
correlation function KP(Xl’XZ)

Let us compute the joint probability density of the gquantities

P(10) = Pl; P(15) = P2; and P(20) = P3. By analogy with (II.23),

we will have

Fl, 2, 3(Pl xg; Pyxgy Pyxj) ==
3

3
!..__.,_. o _l_ \‘ Vot pop
_quqmﬂ°w(ﬂu%%“w“”‘

The quantity |KP | is the determinant of the covariance matrix -

ij

30000 30000 30000
|Kp,|=| 30000 50000 50000 |
30000 50000 73000

The quantities Kj are the elements of the matrix | KP-ll '
ij iJ
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the inverse matrix of IWP |

ij
[
1

]

30000 30000 30000
|Kp, | ={30000 50000 50000 |=10000°3-5:7,34-3:3:5-2—
/1 130000 50000 73000

-&54-34#&-55&:4&&m"xm.
To find the matrix ||k, ~! ||,
ij
by means of the transformation

where A=effeyio
1 0 0
VR Pn
i
— 0 — - 0
° VKe,

l

0 0 —

: VK [,l )

It is well known [35] that D; = A;B,C, implies pt = ¢7lpTla7l

[

171
consequently, Ail = c_llkp_lu o1, which yields
i

]

| = oa™ %,

Let us note that the matrix ||A|| has the elements

Kp
(A} — _..._,__.I/_.__

=R
VK enke,

~i.e. it represents the normalized covariance matrix

AL
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. Let us compute the determinant of

we first go to a new matrix [A]

1




es

rix

A=[Rp [=| 0.28

0,214

0,258 0,214
! 0,166
0,166 l |

After some simple calculations, we obtain

Let us denote the elements of the given matrix A by ajy and

those of the inverse matrix B by b, ..

1)

Let us compute the inverse matrix by using Guassian elimination

(the entries in Table 2 are successively obtained following the

66

& scheme given in Table 1 of Smirnov's monograph [36] ).
TABLE 2
iﬁ Equations | " .z x x| "™ vy Vs Z s
- DA, .o 1| 0,258 | 0,214 |08 |02 I 0 0 Sy(x) = 1,472
§z e - 1 0,166 | — | — 0 1 0 Sa(x) = 1,424
Xl ... — |—o0,0666(—0,0552( — | — | —0.288| — - a;3 X S1(x)=—0,379
S | — | 0.,9334| o0,1108{ — |-o,19) —0,258 ! 0 Spylx) = 1,045
S O - | = b= =] o 0 ! Sa(x) = 1,380
E Xl L L. L R — |—~o0,0458| — | — | —0,214 0 0 13X Sy(x)=—0,315
| — | — |-oo0188 — | — | 0307|019 0 agyX Syy(x)=—0,124
S Sq(x)=0,941
F m R IR — - 0,9344| — - —0,183 | —0,119 I sl”(y)=0'677
g;x,..' ........... - - - — | — | —o0,196 | —o0,127 | 1,072 Sa(y)-=0,749
| - - - | = - |-02:8| 1 0 Siiy)=0,742
L XAy . e . — — - — | — | 40,0218 0,014t |—o0,119 —a34Sa(y) =0,083
é‘ 1 — - - — | — | —o0,23| 1,0141 |—0,119 S11(y)=0,659
S - - - — | — | —0,251} 1,000 |—0,127 Sa(y)=0,712
; ' .............. —_ - - - - 1 0 0 !
aXxy .. — - - — | = [ 40,041940,0272 {—0,2290 | —ay:5s(y)=—0,160
Xy L — - — | — | = |-+0,0776/—0,2810 [+0,0327 | —a;1S:(y)=—0,270
St — — - — | = | 1,195 |—o0,251 [—0,19 S7(y)=0,673
A N — | = | = | russ|—0,251 |—0,196 Si(y)=0,673
£
The matrix B has the form
Liz 0,251 —0,196
A== =Ry o= | —0.251 1,030 —0,127 |.
—0,196 —o0,127 1.072\




Now let us compute the matrix o:

{ 5,77.107° 0 0

9= 0 4,47.1073 0 .

; : o 0 3,70-107% |

; Let us form the product C = N

§ 5,77.1073 0 0 1,12 —2,51 0,19

; C= 0 4,47.100° 0 | —0.25t 1,000 —0,127 |-

: | 0 0 3,70.10-% | | —0.196 - 0,127 1,072

! 6,45.10°%  —1,45.10°% . 113.10°3

: =| —1,12.1073 4,87.07% —5,67-10~*
—7,24-100"  -.4,70-10 4 3,96.1073

. -1 -1

1 Finally, let us compute Co = cA “qg = MP

; i

i 6,45-10-3  —1,45.100%  —1,13.107°

é IKPuh= —1,12.1073 4,87.107° 5,67-10~% || X ;

—7,24.100% —4,70.10™* 3,96-10‘_3

§ 5,77.10~3 0 0

! X 0 4,47.1073 0 =

i 0 0 3,70-1073

: '3,72.107%  —6,47.107% —4,17.107°

| 5 _

: = —6,47-10"° 2,18:107%  —2,10-10~°

i ‘ —4,17.107%  —2,10-107¢ {,46-107°

Thus, the expression for the joint probability density of
the random variables Pl' P2, P3 will have the form

Fl,?,S(Plxl; ng-:; ng:l):—':

3 3
| l X -l ~1
M = () Ty PP =
: @YKy, | ”p( 7 22 K5y ’)

1
- 2 2 , , -6
(18,671 = 10,995~ 7,305 -1 6,470, Py 4,170 Py 4-2,10P, P,) 10- 6

=5,4-10"%¢
; Assuming given values of the longitudinal forces at Xy = 10,
g X, = 15, and Xy = 20 m, we can easily compute by means of the

% above formula the probability that the process passes through

three fixed points in the P, x plane.
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In a similar way one can compute the joint probability
density of the n random variables Pir Pyreney P . In the process,
the computation of the inverse matrix | KPT% || is most conveniently
done on an electronic computer. *

Let us now construct the graph of the function ul(x) = szP(s).

The graphical integration of DP(x) is shown in Figure II.29.

. ,
(1), kg“c¢m
w'o’-' g

3 105

Fig. II.29. Graphical integration of DP(x)

The function ul(x) together with uz(x) = x/(EF)2 determine
completely the correlation function of the process i(x);
this is made evident in Figure II.30.

[y

a | 4,

/ {1}
[]
o

—uprry)

e 1,

27—

Fig. IIX.30. Graphs of Uy and Uy, and of the correlation
function of i (x)
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In accordance with (II.49), we have

K ._{ uy (xg) 4 (x,) npl>l X3 > X1
S A (x1)up (xz) npit x; < x; )

Thus, in order to obtain the covariance of x(x,) and

!
x(xz), it is sufficient to multiply ul[min(xl,xz)] and
uz[max(xl,xz)].

The process A(x) has a normal distribution and is, therefore,
completely determined if the mathemafical expectation and the
correlation function are prescfibed.

| For practical purposes, it is the expected value and the
dispersion of the random processes P and Ay which are of interest.

In the example being investigated here, the graph of Dp(x)
obtained is close to being a straight line, hence we will replace
it by one, Let us use the method of least squares to approximate
Dp(x) in the form

Dp(x) = agx + ay.
The coefficients a, and a; can be determined from two

equations [13]:

0 Z[ao x;--a1— D‘,(Xl)]z
]

()Uo = O,
0 X (a0 xi-1-a1 — Dy (<))
gay = 0.

Differentiation yields
122WHH4r~%WMm:m
i

23 (a0, | @ =D, ()1=0.

These equations can be put in the form
a 2 x5 -1y };. xp-= .\.‘:. D, (x) x; == 0;
i
ay 51kt — ZD, (x) =0,
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Table 3 shows the values of the quantities xi,Dp(xi), xi

and Dp(xi)xi and the corresponding summations.

TABLE 3
F x; DP (xg) x? DP (x; ) xg
1 0 27 0 0
2 10 40 100 400
3 20 48 400 960
4 30 57 900 1710
5 40 72 1 600 2 880
6 50 87 2500 4350
7 60 102 3600 6 120
8 70 116 4900 8 120
9 80 129 6 400 10320
10 90 138 8 100 12510
s | 40 816 | 28500 | 47370

Substituting the values obtained in Table 3 into the
equation, we obtain

28 500 a_ + 450 a, - 47 370
o 1

450 a, + 10 a; - 8le = 0

Solving this system of equations, we obtain

0

a_ = 1.29 kg2/cm.m = 0.0129 kg2/cm?; = 23.5 kg°/cm.

o
Thus,

a

Dp(x) = 23.5 + 0.0129 x

The variance of the longitudinal force, according to (II.48),
is given by

Dp(x) = /¥ D(s)ds = 23.5 + 0.00645 x°.

Finally, the variance of the function A(x) , according to
(IT.49), will have the form

D,(x) = (x/EF) /% D (s)ds = x°(EF) 2(11.75 + 0.0043 x).

Let us now use (II.52) to compute the probability density of

the random variable &. The computations are shown in Table 4.




The quantities Mp(z) ' DP(Q), and MP(E) = Py, shown in columns

2, 3, and 5 were taken from graphs in Figures II.25, 27, and 24

respectively. Figure II.31 shows the graph of the probability
density of the random variable % , constructed from the values

given in Table 4.

e L LAY el T AN i il

- —LABLE 4 - - -
‘B o~ - n &l ~ %
! o & = Tz =% .
i Low| S| ! Tlelsle] S 5
3 S g g sl sl | |-
: ~ 2 o 3 o] ZN[E s <
3 | q MEEIAEEE; >3 &
{ 1 2 3 4 5 6 7 8 9
o Vd
; 40 | 4,60 197.1031,11.10° | 4,0-10% 40,60 0O - -
i 4] 4,67 [205,1-10%1,13.100 | 3,3-10% 26,60 © — —
i 42 | 4,74 [213,2.1091,16-10° | 2,6-10% 15,90 0O - _
~43 | 4,81 |221,3.10° 1,18-10% | 1,9-10% 7,20 0,001/4,08-10~3|4,08.10—¢
! 44 | 4,88 229,4.10% 1,20-10° | {,2-10% 3,14| 0,043|4,07-10—3(1,75.10—*
: 45 | 4,95 (237,5-10% 1,22.10% | 0,5-10%] 0,53| 0,589.4,07-10~3(2.40.10—3
45,7 1 5,00 |243,2.10% 1,23.10 0 -0 1 [4,06-10—3/4,06-10~7 .
i 46 | 5,02 [245,6-10% 1,24-10% |—0,2-10% 0,81( 0,923!4,05-10—3[3.74-10~
47 5,09 |253,7-10% 1,26-10* |—0,9-10°| 1,60 0,202/4,04-10~3/8,15.10—*
48 | 5,16 (261,810 1,28.10° |—1,6-10°] 4,90! 0,007|4,03-10—2[2.53. 10~
49 [ 5,23 [268,9.107 1,30-10° |—2,3.10% 8,60{ 0,001|4,02-10~3{4.02.10~¢
50 | 5,30 278.1071,32-10% |—3,0-10% 16,20, 0 - —

Vi G W e

Remark. In the interval 40 < g < 50, the values of Mp(ﬂ), DP(R),

and MP(z) - Py were obtained by linear interpolation.
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! Fig. II.31. Probability distribution of the length of the
"transition" zone with t = 15° C

i For our problem we can write with sufficient accuracy

‘
i
h
.
{

Dy, () Dy (L) ]
M, mr= (A1, iy = Pillo) - - const,
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in the interval 43<2< 49; here lois the abcissa of the point of

intersection of the graphs P = MP(x) and P = P In general,

H*
20 is not the expected value of the random variable & .

In this interval, therefore, we can take

Mp(l)—P,

Consequently, one can write

Y 2D, (I

Fo(l; t)=

which represents the normal distribution of 2 . The relation
obtained holds for a sufficiently narrow interval of values of

2 , which are of practical significance. Furthermore, it permits,
albeit with a very small probability, the existence of negative
values of 2. However, because of its simplicity, this equation
is convenient to use to obtain rough estimates.

Let us note that for the case Mp = const, Dp = const, the
characteristics of the expression just obtained for the approximate
calculation of the probability density will be:

o= atEl;‘-: Py :

D, (xtEF—P))

SR G

To put it another way, although D2 is not the variance of
the random variable &, the variance is close to DZ for a
sufficiently narrow range of f-values which are of practical
significance.

Let us compute the conditional distribution function for
the displacement Ao of the end of the rail with respect to the

length of the "transition" zone:
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ittt e St

(Fe—AMy (D]
20, (D)

[ @ (oll) = -

]
V=D, ()

All the calculations are shown in Table 5. Columns 2 and

oy 7

3 of the table show values of Dk(l) and MA(z) taken from graphs

U

in Figure II.30 and I1.23.

! TABLE 5

: @ (ko/1)

X Ayl how My (1) 1 2o My (Dt Po— My &
{ 5L oa | Dat)cat LDy Y, an =My (1), o T
! 0 L T : ) LV O, |2V T, =3V D),
H o™’

en ! cn! en !

1 2 3 1 5 6 7 8

H 43,0 1,32-10:: 0,300 l.l5-10_‘_‘§ 31,8 21,1 4,7 0,3

i 43,5| 1,38:10-4 | 0,306/ 1,17-10.-% 34,2 20,8 4,6 0,3
44,0| 1,42.10—4 | 0,312| 1,19-10-2 33,6 20,4 4,5 0,3

: 44,5 1,49-10:2 0,318 1.22-10:'5’ 32,8 19,9 4,4 0.3

{ 45,0 1,55.10—4 { 0,324| 1,25-10-2 32,0 19,4 4,3 0,3
45,5| 1,63-10~4 [ 0,330 1,28-10-2 31,3 19,0 4,2 0,3
46,0| 1,69-10-% | 0,336 1.30-10:§ 30,7 18,6 4,1 0,3

: 46,5| 1,76-10—4 | 0,342] 1,32-10-2 30,3 18,3 4,1 0,3 ,
; 47,0 1,85.10—4 | 0,348] 1,36-10—2 29,4 17,8 4,0 0,3

: 47,5| 1,90-10-4 | 0,354 1,38-10-2 | 29,0 17,6 3,9 0,3

: 48,0 1;97.10—4 | 0,360 1,40-10..2 28,6 ‘17,3 3,9 0,3
48,5 2,06-10—4 | 0,366 1,43-10-2 28,0 17,0 3,8 0,3

; 49,0 2,13.10—*% | 0,370| 1,46-10—2 27,4 26,6 3,7 0,3

I Remark. In the interval 43 <i< 49, the values of Dk(z) and
' MA(Z) were obtained by linear interpolation.

Using the calculated results we construct graphs of ¢(Ao/£)
for different values of &, as shown in Figure II.32,a - m. An
examination of the graphs:shows that the probability density of
the random variable Ao varies smoothly with changes in the length
of the "transition" zone 2. This indicates that the random
; variables Ao and 2 are correlated. Tables 4 and 5 and Figures

IT.31 and 32 determine the two dimensional probability density
of these quantities.
Results of the calculations of the joint probability density
% of A, and i are shown in Table 6. Column 2 of this table is

obtained from the graph of Fo(z;lS), given in Figure II.3l. The

i entries in the remaining columns are ccmputed according to the
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J
given at the end of Table 6. It is not difficult to see that,

*
rule ¢ (Aoi;z.;IS) = Fo(zj;IS)Q(Ai/zj). The sum of each column is

except for the multiplying constant 20, the guantity
3

a

*
107 ¢ ¢ (Aoi;zj;IS) is equal to the probability density of the

random variable Aoi‘

Teoesracert+ Iy

Indeed, according to (II.54), we have
@o(xoi;IS) = fo ) (Aoi;z;IS)dz 2 Azg ) (Ao
however, A% = 50 cm, which proves the assertion. Figure II.33

P Xalalad

.32.:;15);
i 3

shows the probability density of the random variable Ay

rerey i i oem

displacement of a free end of

s TABLE 6

@° (hey 13 15) = FO UL 15) O/ 100, ca—? far »e. ux

£

I' Foo(0: 18y, -1 - - . - © °

e clalalslslalelalalals] ]3]z

: 9 ' ' ' " ' " ! B 1 1 ] ' 1
ot N e B e O N I R I e R
ﬁ 1 2 3 4 5 6. | 7 8 9 10 n 12 13 14 15 16
Wi 43,0 0 ol ol of ol of ofo ol ol of of of of o
0% 43,5 0,03-10—3 o |0,00]043| 0,80 0,9 0,48 0,12} 0,01} 0O 0 0 0 0 0
.35? 4,0 0,2-10—3 o |o,08]1,44| 4,08 6,56 5,13 2,08 0,32] 0,02 0 0 0 0 0
AV 44,5 0,7.10—3 o |o,14|1,9 | 8,40/ 17,9]| 22,10/ 13,90} 5,03 1,000 0,01} O 0 0 0
b3§ " 45,0 2.4-10—3 0 o | 0,77 | 11,50] 42,20} 70,90 65,20| 34,50{ 9,60/ 0,57 0 0 0 0
5 45,5 3,9.10—3 0 o | 0,75 | 7,50 39,00| 93,50|122,00| 77,20| 32,00{ 7,80} 0,75 0 0 0
wf 46,0 3,7.10~3 0 0 o | 3,00 14,80 51,80 98,00{105,00| 61,20| 19,60| 4,45 | 0,30 0 0
ﬁ?ﬁ 16,5 2,3.1073 0 0 0 0,30 4,60 20,70| 48,30| 69, 10| 56,40} 27,70 6,90 | 0,92 0 0
A 47,0 0,8-10~3 0 0 0 0 0,03| 3,00 10,40 19,70| 22,80} 16,00 6,40 | 1,60 | 0,20 0
3{ 47,5 0.92.10~3 0 0 0 0 o | o,15 1,20 3,60 5,60 5,20 2,80 0,90 | 0,08 0
g?? 48,0 0,02.10=3 0 0 0 0 0 o | o,060 0,20 0;44] 0,57) 0,451 0,20 0,06 0
ST w5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
et
o . .
o In conclusion, let us note that the formulas derived here
o .
M can be applied not only to the case of the first loading. For
i this it is sufficient to make use of the function ¥(X ), averaged
f
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*
with respect to A , which will certainly lead to a change in the
statistical parameters and, in particular, to the increase in the

variance of the random functions p(x), P(x), x(x).

@o (2, 15)cm”!
20
% A\
) /AR
i / N
8 l— / \
A
4 N
I

o]
87 83 3 33 35 37 Apm,

Fig. II.33. Probability density of the displacement of
a free end of a rail string
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3. Solution of the equation for longitudinal track
displacements for the case of the second and subsequent
loadings. Hysteresis phenomenon in CWR track.

In the following presentation we will examine problems
and their solutions in the classical (not statistical) setting;
therefore, it will not be necessary to take the mean value in
equation (II.6). The general solution of (II.5) in a statistical
formulation was given in the first section of the present chapter,
and there is no further need for refinements relating to boundary
conditions on the correlation functions of p(x), P(x), and x(x),
similar to the ones presented in the second section of this
chapter, since this would amount to a repetition with changes
which have no practical interest in view of the paucity of
statistical data. The general form of the function ¢(A,A*)(more

precisely, the expected value) is shown in Figure II. 34.

|
S
\
) N
- ~
|8
717 2
N

Fig. II.34. Graphs of the force transmitted from rail
to tie when the tie is loaded for the second time

If a tie fnore precisely, rail cross-section) is displaced by
*
A while the temperature varies in one direction, it does not return

to its original position when the direction of the temperature change

is reversed and the temperature returns to its initial value, i.e.
a residual deformation is created. For the second loading, it is

*
evident that the function ¢(ix,) ) can be put in the form
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® (s 1) = (%, 0 — [[(F — 1), A%]. (11.55)

Here f[(x*-x),x*] = f(e,x*) is an increasing function, which
can be considered given on the basis of processed experimental data.
For the experimental determination of the function £(o,2"y

it is sufficie;t to first displace the tie by the amount A*

along the track and then to construct the graph of the decrease

in the force transmitted to the tie, against the magnitude of the
displacement of the tie (rail cross-section) from the initially
displaced state in the direction of the initial position of the

tie. Except for the multiplying factor 24x, this graph determines
the required function f(e,A*). The relations between the quantities

*
X ,2, and 6 are shown in Figure ITI.35.

Displgcement direction

[

r—-—=

Fig. II.35. Tie displacement under repeated loading:

1 - tie position at the initial moment of the first loading;
2 - tie position at the initial moment of the second loading.
Substituting (II.6) into formula (II.55) yields

EF Z*" (07, 0) - 10,27, (II.56)

However, since the preliminary displacement takes place during

the first loading, it must satisfy

L dEA .
: —_———— T (.) .
EF dx® P (A% 0) (II.56a)
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Subtracting (II.56) from (II.56a), we obtain
) d!x* dgx— J_ . .
& —ae = EF O

*
or, making use of A -2 =8, we finally arrive at

2

de = _1 *
— — f(6,1 ). (I1.57)
dx EF '

It is easier to solve (II.57) than (II.6) because the

boundary conditions are simpler, as will be shown below. In
accordance with (II.2) we can write:

.odh _E_
_ a;._at+—EF.
av* Pf
Tr = g

where t* is thé temperature rise from the time the rail is
installed in the track to the time when the direction of the}
temperature change reverses, and P* is the longitudinal force in
the rail length at the moment the temperature change reverses
direction.

Subtracting the second equation from the fifst one, we
obtain

do C

where 1 = t* - t is the decrease in the temperature from the
time of the reversal of the direction of the change, and G =
P* - P is the decrease in the longitudinal force in the track
produced by the decrease in temperature by T. |
It is gquite obvious that if in the first stage (during
first loading) the temperature of the rail string is lowered,
it will rise during the second stage, during which, of course,

it can cross the temperature at which the rail string was

installed in the track, so that the quantities t and G can be
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either positive or negative.
At the cross-section x = s, where the first loading zone
borders on the second loading zone, the conditions
A*(s) = A (s);
'G@=—mﬁ,
must be satisfied, from which it follows that

Oees == 0 0']gmsy - 0.

Let us examine the solutions of (II.56) for several special
cases. When the interaction between the rail and the foundation
*
under the rail is due solely to friction, the graph of ¢(1,x ) has

the form shown in Figure II.36.

P(A,A%)

-.-A’——-

A7 —

Fig. II.36. Graph of the distributed force transmitted by
the rail as a function of displacement for the case of
repeated loading, assuming frictional interaction between
rail and the foundation under the rail.

For the case the following conditions hold:

* ’ *
$(x ,0) = c; £f(8,x ) = 2c,

where c is the linear resistance to rail displacement.

Let the origin of the coordinate system be located at the
left hand end-point of the rail string. The Loundary conditions
on the function P*(x) will be:

* * *
P (0) =P P (xo) = —at EF,

H
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*
from which, taking into account (P ) = ¢, we obtain
~ . = P'
* L
. 0 npu ¢ <aEF ,
L at*EF—P" " PH
———77——-npntj>&fr.

*
and the expressions for P take the form

__al*EF — P,
pr — Py—cx npu _x<x0-——~—c——.

—al*EF npH x> Xq.

The boundary conditions on G(x) will be:

6= PHO)— P(0) = — 2Py G (s) = — uiEF,

* . .
which, since G. = 2¢, implies
Py
' 0 npit 1< jlli . ‘
:
T | exEF 20, 2P,
7 Ea D LU > LF "

Solving (II.57), we obtain

G - — 2P, — 2cx  npi x<.s.
N {———atEF npi x>s.

*
Figure II.37 shows the graphs of P and G, and their

difference, which represents the longitudinal force P(x) in

the track.

*
he,

=T

——s—-

G

X,

Fig. II.37. Longitudinal forces in the rail for repeated
loading and purely frictional interaction Lbetween the
rail and the foundation

The case examined above was treated quite extensively by

Wattmann [8] using a method which cannot be generalized to apply
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to cases more complicated than the one for which the interaction
between the rail and the supporting foundation is purely frictional,
When the rail-foundation interaction is elastic and frictional,

*
the function 4¢{A,) ) has a form shown in Figure II.38.

=0
1

Fig. II.38. Graph of the distributed force transmitted by
the rail as a function of displacement, for the case of
repeated loading and frictional-elastic interaction between
the rail and the supporting foundation

*
If the interaction law is linear, ¢{(Xx ,0) and f£(8,A) have
the form

%* %* *
o(x ,0) = c + Rx ; £(8,2 ) = 2c + Ko@.

The case of frictional-elastic interaction differs from the
purely frictional one in the existence of constraints which oppose
elaséically the sliding of the rail on the supporting foundation.
Consequently, in addition to the frictional forces; there arise
between the rail and the foundation tangential interaction
forces of an elastic nature, which we assume to be distributed
along the whole length of the rail. As in the case previously
considered, we will take the coordinate origin to coincide with
the left hand end-point of the rail string. The boundary conditions

*
on P (z) will now be

* * *
P (0) = —PH; P () = --at EF.

Here % is the "transition" zone of the rail string, which, in
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view of (II.46), has the form

bF * "
K_ ﬂg—F P I/EF npu (* >
0
: P <_aEF
where we have taken into account
*
P |x=2 = —P,.
The arguments 2z and x are related through x = 2 - z. 1In the

new coordinates, the longitudinal force equation has the form

~—sh l—2)—al*EF npu z< /I
P*z) = [ I/EF( ) o z<t, (II.60)
—al*EF npu z>1

The boundary values for G(z) will be
G (0) = = ZPH; G(s) = — a1EF,
where, by analogy with (II.69), s is determined by

VEF ' arEF—ZP.,l/K > 2 EF
|

npu 1<: EF

S =

Similarly, by analogy with (II.60), we can write

—2)—atEF npun z<s
G6) = 2cl/ Ksh]/ (s—2)—a P )
—-arEF npH z>s

Figure II.39 shows the graphs of P*(z), G(z), P(z) and xr(z2)
for the particuiar case 1 =-t*, i.e. for the case when the rail
temperature goes down to the level at which it was installed in
the track. It is evident that when this happens, residual stresses
and accompanying longitudinal displacements will be produced.

All the results obtained above are valid only if s < ¢, for, if

S > 2 , the ties which were in the neutral position before
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0 3 * I3
(i.e. those, for which » = 0), begin to move. The force trans-

mitted to these ties, as a function of displacement, has the form
*
¢(x,x ) = ¢(1,0), along the length of the rail the function ¢(A,A*)

becomes piecewise continous:

gy [ @OF O —FO,A%) v,
P ) | 91, 0) Cupn x>
RPG a
LW T
r > ™
S % '
MF—S—~L . x
1A
A
0ll { =

Fig. II.39. Diagram for the longitudinal forces in

rails loaded for the second time, with combined frictional-

elastic interaction between the rails and the rail supporting

foundation

To construct longitudinal rail force diagrams for the case

' *

s > & , and also for the case s < & , with f(8,x ) = fl(e)
specified graphically, it is convenient first to construct
special templates. (This case is clearly a generalization of the
previously investigated cases of purely frictional and elastic’
interaction between the rail and the foundation.) These temp-

lates are formed from the curves which correspond to solutions

of (II.56a) and (II.57) with boundary conditions:

* * 1 '
A (0) =0; 2 (0) =0; 6(0)y =0; o (0) = 0;

the general shape of these templates is shown in Figure II.40.
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- L 4
Fig. I1.40. Templates for constructing longitudinal force-

rail displacement diagrams when the rails are loaded
for the second time

The construction of longitudinal force diagrams for the case
*
of second loading when s < 2 is very simple if the P and Go

templates are available, as is evident from Figure II.4l.

Pz) A P Diagram

o
g

Fig. II.41. Longitudinal rail force diagram for the case

of second loading, with arbitrary resistance-rail displacement

relation, assuming the second loading induces displacements

in the zone displaced during the first loading

*
For example, to construct the P (x) diagram it is sufficient
*
to place the Po template on the graph of the straight line
* *
P = at EF in such a way that the curve passes through the point
(O’PH) and, drawing the curve along the template from the origin
* *

to the point x = ¢ , where P = ot EF, to continue it as a
horizontal line. 1In the same way, letting the curve Go of
the template applied to the straight line G = oa1EF pass through
the point (O,ZPH), one constructs the G(x) diagram. The difference

*
between the P (x) and G(x) curves then yields the longitudinal

force diagram for the second loading, as shown earlier.
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If in the process of constructing the G(x) diagram by the
above method it turns out that s > & , the diagram must be
constructed in a somewhat different way, as shown in Figure II.42,

»

x P,G

s, ’ P Diagram
4 <bo A T
E XYL Q‘r I il « |
N I
M ﬂm 13
LS 7 .
/ lso""i 'E o4
»
g : ¥
[

Fig. II.42. Longitudinal rail force diagram for the case

of second loading, with arbitrary linear resistance-rail

displacement relation, assuming the second loading induces

displacements in the zone displaced during the first

loading and outside of it

Assuming a value for the length of the "transition" zone
under second loading with s > & , we construct the displacement

*
diagram on the interval % <x<s by applying the Ao template to
the abcissa in such a way that the template origin coincides with
the point x = s. At the point x = % we must have 6(¢ - 0) =
8(2 + 0). Consequently, applying the eo template to the abscissa
in such a way that the curve passes through the point 6(%) of the
*

curve constructed with the AO template, and, fixing the position
of the curve on 0<x< &, one can construct the complete longitudinal
displacement diagram. (Let us recall that the origin of the coordi-
nates is at the end of the rail string.) Now, positioning the end-

point of the Go template at a point with abscissa Sor corresponding

to the end-point of the 85 template, let us draw the longitudinal
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force curve G on 0<x<& in such a way that it passes through the
point (0,2P,).

Finally, taking into account the condition G(& - 0)= G(2 + 0),
let us construct the force diagram G on &<x<s. To do this, it
is sufficient to locate the end-point of the template Po at a point
with alscissa x = s and, move the template vertically until the
curve passes through a point on the curve constructed with the
Go template. Taking into account the fact that at the point
x = s the longitudinal force is equal to atEF, one can find for
every value of s a corresponding value of the temperature decrease
1 after the direction of the temperature change is reversed. The

general form of s = s(1) is shown in Figure II.43.

“]I‘“

Vs

Fig. II.43. Graph of transition zone length vs temperature
rise t in the second loading process

If the temperature is lowered by an amount Ty after the
direction of its change has been reversed, the length of the
"transition" zone is the same during the second loading as
during the first one; as the temperature 1 is decreased further,
the ties, which had been in a neutral position, are displaced.
Since the linear resistance has a jump discontinuity at the point
X = % , the curve s = s(1) will have a corner at that point.

From the graph of s = s(1) one can quickly find the length of

the "transition" zone as well as the discontinuity conditions

87



at s = 2.

Having the graph s =s(tv), one can construct the longitudinal
force diagram for the rail string without first constructing the
displacement diagram. The displacement diagram for the second
loading can be constructed very simply with the aid of the A*, and

o, templates. Figure II.44 shows the construction of the diagram

for the cases & >s and &< s.

Fig. II.44. Longitudinal displacement diagrams in rails during
the second loading of the rail string, with linear resistance
being an arbitrary function of rail displacements.

If the functions P(x) and X (x) are represented in the form

P(x) = P (x)-G(x), A(x) = A (x) - ¢(x), as had been done for all

the solutions previously presented, then in solving the corresponding

statistical problems it should be recalled that in adding random
functions their expected values and correlation functions must be
added. In this case, the distribution of the random variable A (0)
is determined by the composition of the distributions of the random
variables A" (0) and 6(0).

Equation (IX.6) can be solved by some approximate method (for
example, the method of finite differences) for the most general

*
form of ¢(r,x ). It is evident that this solution applies not
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only to the case of the second loading, but also the cases which
pertain to all subsequent loadings.

In general, equation (II.57) can be integrated graphically
in the following manner. The displacement diagram for the case of
the first loading will have a form shown in Figure II.45a. The
free end of the length of rail is denoted by a. Let us pick a
value for the "transition" zone length for the second loading,
and let us take for the coordinate origin the point whose distance
to the end is s. The initial conditions will be

8| =0; o' = 0.

X=0 X=0
The second of these is equivalent to

P(0) = P (0) — atEF.

= Let us mark off interval 0;P of unit length to the left

;ng l of the origin on the horizontal axis (Fig. II. 45, b and c).
:
4
ling
b Fig. II.45. Graphical construction of the 6(x) and 6'(x)
diagrams.

o
Let us rewrite (II.57) as a system of two first order

differential equations for y and 0

Ao e i i e

do . d}'_- '1<_ 0 At
a-i-_v y' a'x == EFfI i;“ (X)l
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The length of the segment Uzﬁ'will serve as the scale unit
for y and (EF) T£(8,1 (x)).

Let us construct the straight lines x = Xyr X = Xoy X = Xg,..,
parallel to the A-axis.

Let us mark off the points Mg and N with coordinates (0,6(0))
and (0,6'(0)), which, evidently, coincide with the origins of the
coordinate systems 6ox and 6'ox. Let us lay off along x = 0l the

segments 0,A_ and 0,B_ , equal to 8(0) and (EF)-lf(e(O), AN 0.

1
The second of these quantities can always be assumed to be different
from zero, for even if there were no dry friction during the dis-

placement of the rail, one can always take 6(0) = ¢, where ¢ is

any value smaller than the accuracy of the measurements (Figure II.46L

£

F(1,4%) F}
T
,<0\
N
g m
— )

Fig. I1.46. Graph of the force per unit length transmitted

by the rail to the foundation, as the direction of the

displacement of the rail cross-section is reversed

Friction forces are present in any real system, and conseguently
the power series, for the function f(e,x*) contains a constant term.
The directions of the segments PA and PB yield the tangent direc-
tions 0'(0) and (EF)—lf(e(O),A*(O)) and, conseguently, the directionsf
of the integral curves at the initial points My and No' From these
points, let us construct segments E;ﬁI and N;ﬁ; parallel to PA

and PB_, until they intersect the line x = x;. Let (xl,yl) be the

coordinates of the points M, and N,. On the 01 axis, we lay off
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ae

O

segments OlAlland 0,B;, equal to y, and (EF)_lf(el,A*(xl)).

Starting at M, and N;, let us draw segments EIE; and ﬁzﬁ;,
parallel to FKI and ?ﬁ;, until they intersect the straight line
X = X,, etc. In this way we obtain two polygonal curves, MoMlMZ"'
and N1N2N3..., which provide an approximate representation for the
desired integral curves.

According to (II.58) the quantity G(x) is determined from
the expression

G(x) = 9'EF — atEF,

from which, taking into account the end condition G(s) = -ZPH,

we obtain

P
H
L]
8'(s) + ZE—F.

~
i
e |+

Assuming different values s for the length of the "transition"
zone and, for each of these, a value for the temperature decrease,
we can construct the graph s = s(1) which, in general, will
resemble the graph in Figure II.43.

For the case of the n~th loading, the function ¢n(x,x*)

can be represented in the form

oA"Y = s _1(xA ) (— 1 _(o,27)
n’ n-17 ntorn e (II.61)
(n =2, 3, 4, ...).

*
Here o = |A-2

For n = 2 this formula coincides with (II.55). If the
longitudinal force and logitudinal displacement diagrams are
available, this representation allows one to construct such
diagrams for the next loading, the problem bring reduced to that

of finding functions which satisfy (II.57). Thus, starting
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with the first loading and making use of the recursion formula
(I1.61), one can construct the P(x) and A(x) diagrams for a

system successively loaded and unloaded n times. it should be
noted that the influence of previous loadings is erased to such
and extent that after the fourth loading one can assume ¢n(A,x*)

= ¢O(A) for n >4, where ¢O(A) is the function obtained by averaging
with respect to A*

Thus, all the developments of this section are applicable
only to the investigation of the effects of diurnal temperature
oscillations on the longitudinal rail forces and displacements;
to study processes which affect the track over more extended periods
of time, one should assume the relations derived for the first
loading, replacing the function ¢(A,0) with ¢O(A). This is also
justified by the fact that in the course of time atmospheric
influences, the movement of rolling stock, and improvements due
to track maintenance all affect the nature of the contact between
the ties and the ballast, and between the ties and rail.

In studying hysteresis phenomena in CWR track, we will confine
ourselves to examining the case of a special assignment of the
function ¢(A,A*), which, however, is general enough to include the
cases of purely frictional and frictional-elastic interaction
between the rail and the supporting foundation.

Let us assume that

* _ * _ _ n - . 2
oA ) =4 5 (A2 (—1) " _(0), (n=2,3,4, ...). (11.62

For a purely frictional interaction this formula has the

form +

o, (ha") = ¢ — (—1)"2c.
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1 For elastic-frictional interaction,

C a n
¢n(A,A ) = e+ Kx — (— 1) ' [2c + Ko].

Here 6 is the tie displacement from a previously displaced

ot s g -

position (due to previous loads).

For practical purposes fo(e) can be obtained by averaging
f(e,x*) with respect to positive values of A*. It should be
recalled that the function ¢°(A) is obtained by averaging
¢(A,A*) with respect to both positive and negative values of A*.

It is quite obvious that the variance of fo(e) is smaller

; . than the variance of ¢OLA); however, after several successive
' S

loadings the variance of ¢n(A,A*) will become greater than the
variance of ¢O(A) (for some n).
Let us examine successively three stages of temperature
{’- change (loading): 1) increase in temperature t from zero to
its maximum value t*; 2) decrease from the maximum value t¥*
to its minimum value toin’ 3) increase from the minimum value
. tmin to the maximum value t*.

With repeated cyclical changes in temperature in the interval

»*
[ [tmin't ], the last two stages will be alternately repeated.

It follows from (II.29) that during the first loading the

Y A L s e e

displacement of the end of a length of rail and the temperature

rise are related by the following formula:
- 11.62)¢ P 2§ (A 0)dx+fi'—
: 1=z )/ ') POt

Solving (II.57) and substituting the boundary conditions, we

e

PPt b i

obtain
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e —
_ 1 2 2P,
T—E‘l/ﬁé‘f(o)do —l-o_tE—F'

during the second loading, which yields

ta—:t‘—‘r:—-‘—é]/l-s%.-jq)(k.O)dk———
1}
’ l:-—-).
l 2 PH
) E’Fj TO0 =
0

*
where Ao is the maximal displacement of the rail end at the end

of the first stage of temperature change, and Ao is the displacement

of the end during the second stage.

Making use of (II1.62), one can obtain the relation between the
temperature t and the rail end displacement Ao during the third

stage. Obviously,

! A: ) ):_X.mln
1 2 1 ) ,
13_31/? g 90 0)dh— !/Ef S FO)dO -
]
de—2am(n
1 2 P,
+ '&'VEF' S f(0)d0 -- GEF "’

min is the minimal displacement of the rail end at the end

o

[=]

where A
o

of the second stage.

The graphs of t(AOl), t(AoZ), and t(A03) are plotted in

Figure II1.47, which clearly shows the hysteresis loop.
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Fig. II.47. Displacement of a free rail end due to
cyclical temperature variations

Except for the multiplying constant (l/qaEF), the area of the
loop represents the irreversible part of the work done by the sun
in destroying the ballast, ties, and fastenings in the "transition"
zone region. To prove this it is sufficient tb note that the
work done by the sun in the "transition" zone region is equal to
the work done by the external force P = atEF applied to the end
of the rail.

To compute the work done by the sun, we can use the formula

A : '
A=aEF | 09— 101 dh =~ VEEF | (\/r F(0)d0 -

)‘.mln .mln

M omim X = min
-ﬂ/ §f@m—l/.f fmm+;“)ﬂo
0

To construct the hysteresis loop it is convenient to use

(II.63)

templates bounded by the curves

__ S
1./ 2 L/ .2
= ‘/EF e 0)dr n - - VEﬁgf(O)dO'

For the case of frictional interaction these curves become

«e

pParabolas:
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For this case the area of the hysteresis loop can be computed

quite simply (Fig. II.48).

8
* br C_l
: t "'i [OTIOT S\%
o / ) 7.—{
(4
emin = a d
0 A
(.t “tmin~ 7

Fig. II.48. Construction of the hysteresis loop in the
motion of a free end of a rail

It is clear that the area s of the figure aecf is given by

Saect = Sabca ~ 28

14

ebc

where

«*EF (,, 2P,
Sabcd= 1c (t*'—tmln EF) (t* tmin);

the second term can be computed from the integral

2P,

"."mln";‘f{ﬁ
' aEF 2P, \?
Sebc = ;,[ f(O) do = 1oz (t tmln'—&—EF‘) .
Thus, the energy dissipated is given by
: A=aEFSg. -
asE3f? ¢ 2P, \? r 4Py (II.64)
= —12—0 - ( - |nln—&“E'-"F') Linfn — <EF "
If P, = 0, the equation (II.64) takes the form
@ F2F
A-—-—‘ l ( "[nlln) (II.GS)
Let *
oEF(t — tmin) = 2P¢'
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where P¢ is the amplitude of the fictitious force applied to the

end of the rail.

Then formula (II.65) takes the form

3
a= 2%y (II.66)
3CcEF

The cubic dependence is consistent with the relation between
the area of a hysteresis loop for steel and the stress amplitude.
For the case of elastic-frictional interaction between the rail
and the supporting structure, the integral in (I1.63) can be
found in integral tables and is expressible in terms of elementary
functions. In.the more general case when the function £(8) is
approximated by a polynomial of third degree, the expression‘
(II1.63) can be reduced to a system of elliptic integrals of the
second kind.
| It was already noted that in examining forces and displacements
in CWR track, produced as a result of temperature changes over a
period of several days, the function ¢(A,A*) should be replaced
by ¢O(A). When even longer periods - a month, or several months -
are examined, even the dependence on the raildisplacement is
erased; this can be explained by the existence of creep at a
! steady temperature, the relaxation of forces transmitted from the
ballast to the ties, and even by atmospheric effects. Important
effects which tend to smooth out thé function ¢O(A) are produced
by the movement of trains, and even by work done to maintain the
track. In general, the smaller the rate of temperature increase,

the more weakly correlated will the function ¢(x,A*) be, and the
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formulas previously derived are most accurate for the ideal

case of a sudden temperature rise, dt/dT = «., Here T is the time,
In what follows, dt/dT will denote the average rate of temperature
change for the period of time being considered.

When dt/dT = 0, when constructing force and displacement
diagrams produced by a temperature rise over an infinite time
period, the dependence of the linear resistance on the displacement
of the rails disappears completely.

Let us examine this phenomenon in somewhat greater detail.
Suppose the temperature of a rail string increases by an amount
t1 during a time interval ATl = T21 - Tll’ so that dt/dT = tl/ATl'
Let us measure the magnitude of the displacement of the rail cross-
section at several points, and let us compute the magnitude of the
linear resistance at these points using, for example, the approximate
formula p = EF(AZA/AXZ). Repeating this experiment under the same
conditions many times, one can construct the p,A correlation net,

and compute the correlation function K (ATl) of the random

p(t),A(t)
variables p(tl) and A(tl).

Now, taking a different time interval AT, = Ty, - Tyye

during which the temperature is raised by the same amount t, as
during the previous series of experiments, one can compute the

correlation coefficient K (ATZ)'

P (t) IA<t)
In exactly the same way, given a time interval ATn, one can

compute K )(ATn) (Figure I1.49). The graph obtained can

p(t) I}‘(t
be regarded as the correlation function between the processes

pt(T) and At(T); furthermore, if the correlation coefficients
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were determined by a regression of p over A , the correlation
function Kp(t),A(t)(AT) characterizes the closeness of the
dependence of the linear resistance pt(TZ) at time T, on the

displacement of the rail cross-section At(Tl) at time Tl'

Kp(t),act) (aT)

at

aT, daYs
4

0 1 2 J
Fig. 1I1.49. Graph of the correlation function of the linear
resistance and rail cross-section displacement as a function
of the time interval during which the displacement takes place

Having the information about the order of the system [ we have

7
1

*
in mind the graph of ¢(A,x )] at time Ty when the temperature

v

begins to rise, we must construct the force and displacement

nate diagrams for time T2 at which the temperature stops rising. If

®

during the period AT =-T2 - Tl no further information is received
concerning changes in the state of the system, its order must
m . decrease according to the second law of thermodynamics simultaneously
with an increase in the entropy - a measure of the system
indeterminancy.

Since p grows together with the growth of the displacement
A, we can assert that the correlation function Kp(t),A(t)(AT)
is positive. It is convenient to approximate this function by

the formula

| AT
—

Koy (AT) =- Age 70, (I1.67)

where Bt is the correlation time, i.e. a period during which the

-

correlation is, for all practical purposes, erased. This

quantity varies between 3 and 7 days. It is easy to see that
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At = Kp(t),A(t)(O)' In the first approximation, the quantities

At and B, can be considered independent of the temperature.
Consequently, in examining yearly temperature changes we
must look for the linear resistance as a function of the temperature
and time, and not of cross-section displacement.
At the present time the following relation between the
linear resistance and the temperature is accepted:
¢es, for t. > 0,

o = ¢ (I1.68)

pw, for tc < 0,
where P is the averaged linear resistance to displacement for
summer temperatures, P is the same quantity for winter temperatures,
and tC is the temperature in degrees Celcius.
It is unnecessary to examine the construction of temperature
diagrams based on the use of equation (II.68), since these can be

found in any textbook devoted to railroad track construction.
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CHAPTER III

INVESTIGATION OF THE OQOPERATION OF CONTINOUS WELDED RAILROAD
TRACK AND EXPERIMENTAL DETERMINATION OF PARAMETERS AND FUNCTIONS
WHICH DETERMINE ITS BEHAVIOUR UNDER TEMPERATURE CHANGES

1. Determination of the statistical parameters of the function
v(1,0). Experimental goals and methods, and results obtained.

The basic statistical characteristics of the dependence of
the rail displacement on the force transmitted by the rail to the
tie were determined in experiments conducted by the author at the
Tsaritsin station on the Moscow line.

Two 550 cm lengths of P50 rails, isolated from the rest of
the track by 50 mm gaps, were laid in the experimental section.

Ten wooden ties, attached to the rail by intermediate fastenings

of type K, were installed along the length of these rails. The
distance between the ties was taken to be Ax = 55 cm, which corres-
ponds to 1840 ties per kilometer. Crushed stone of medium hardness
was used for the ballast. Joint bars were omitted.

The displacement of the rails was fixed by means of dial
gauges installed at both ends of each rail.

Figure III.l shows the arrangement for displacing the 5.50 m
section. The actual displacement was effected by means of a two-
cylinder hydraulic jack equipped with a manometer.

Before each experiment the ballast was packed by an electric
tie tamper. The clamp bolts were tightened once every ten

eXperiments
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To eliminate the influence of displacements of one rail on
displacements of the other rail, the ties were cut in half, and
to prevent misalignment, the rails were fastened to the center of

the half-ties, as shown on Figure III.Z2.

— 3300

Fig. III.l. Arrangement for moving the rails by means
of a hydraulic jack; (1) dial gauge; (2) manometer.

!.._ rJfo—FI /

Tt ;/; -t RN

ORI O AR IR I s ore A
CARIILRY i -

P TN

(s

Fig. III.2. Track-stand cross section; (1) pin for attaching
dial gauge. -

Because of the narrowing of the track gauge in the experimental
section, the gauge was also made smaller in the adjoining sections
of the track to permit the use of the hydraulic jacks. The
longitudinal forces were computed from the manometer readings to
within m, = 160 kg. The arrangement of the dial gauges is shown
in Figure III.3. The forces transmitted to the rail were fixed

after every 2 mm of longitudinal displacement.

Fig. III.31 Arrangement for fixing the displacement of a rail
Cross-section; (1) plate; (2) dial aauge; (3) stand.




11l

The simultaneous displacement of five ties (ten half-ties)
was dictated by the following considerations: (1} In moving a
single tie the ballast in the tie crib (if the tie crib is not too
large) is subjected to a higher pressure because the preceding tie
remains stationary, which does not correspond to actual operating
conditions in a track. (2) When a large number of ties is moved
simultaneously one must take into account the differences in the
displacements of the individual ties, since these differences can
be appreciable. (3) The accuracy of the experiment is improved
when several ties are moved simultaneously by the hydraulic jack,

since the accuracy m of determining the force transmitted to one

“tie is equal tom = 2mo/no, where n, is the number of ties in

the displaced section of the track. 1In particular, when n = 10,
m= 2(160)/10 = 32 kg.

Thus, an optimal number of ties to be moved simultaneously
must be selected, on the one hand, to create conditions which
are similar to actual operating conditions for ties in a track,
and, on the other hand, to achieve conditions of equal displacement
(within certain limits of accuracy) of all the ties (more precisely,
of rail cross-sections opposite the ties). In addition to this,
it is desirable that the force needed to effect the displacement
should be in the range 9 - 10 tons, since larger pressures may
Cause o0il leakage through the cylinder seals, which will result
in erroneous manometer readings (the cylinder pressure drops quite

Precipitously with time).

The experiments were perfomed during dry summer weather.

The results are shown in Table 7. On the basis of these results
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Table 7

o400 (Divisions ).._._

Ao | Ao [ Xee | 2 da Lo b oae Lo [ |2 |0
O aag) me? mar| ecd mem| o G sl o B |-V A 02 a1 srs|c 16 sa| U8 ] 20
s | oae
10 16 21 25 28 20 30 30 30 30 | 4h
11 16 21 25 27 29 30 3 3] 30| 3

1o (16 | 21 | 25 | 28 | 20 | 30 | 31 | 31 | 31 |m
T | 75 | 20 | 23 | 26 | 27 | 28 | 29 | 31 | 333

lo | 17 | 22 | 25 | 27 | 29| 30 | 30| 33 |33 |2
0 | 7 | 28 | 26 | 29 | 31 [ 32 | 33 | 33 | & |
l2 | 16 | 20 | 20 | 97 | 29 ) 31| 39 | 30 | 32|
10 | 17 | 22 | 35 | 27 | 29 | 3 | 30 [ 31 |31 |3y
9 | 14 | 18 |2t 2 | 25 | 26 | 27 | 29 |99 |3
T0 | 16 | 22 | 25 | 27 | 29 | 30 | 31 | 3 [ 31 |31
10| 16 ] 2 | 23| 26 | 28 | 20 | 30 | 30 |29 |29
0 | 77 | 23 192 | 28 ) 3 | 31 | 32 | 32 |3 |33
0 | 16 |20 | 25 | 28 | 30 | 31| 32 | 35 |3y a6
To | B | 21 | 2 | 7 | 8 | 9| 29 | 3 [ 3|42
10 | 15 | 20 22\ 20 | 26 | 26 4 28 3 29 4 29 440
70 | 15 | %0 | 23 | 25 | %6 | 27 | 28 | 29 | 99 |40

26 | 28 | 30 | 31 | 31 |36 |3
29 31 32 33 32 33 | 33

os
=l o
MIM
o —
2N
W

26 27 28 29 30 31 | 31

5 | 26 | 23 [-26 [ 27 | 29 | 31 | 31 |32 |3

=)
(433
N
o
N
[9%)

20 | 23 | 26 27 | 28 29 3l | 32 |3t
20 23 26 28 30 31 3 |13 [ 5

15 20 23 25 26 26 28 30 | 31 |29
p 31 33 34 33 33 | 32

1S ol |
=

©
2
-
N
N
€l

0 | 16 | 21 | 24| 27 | 20| 30 | 31 | 30 | 3|3
To | 1 [ 2t [ 29 | 27 [ 29 | 30 { 31 | 31 | 31 [ 33
10 [ 16 20 |2t f a6 o8 | 29 | 29 | 3L |z |3
] 70 2 | 27 | 30 | 37 | 3 |30 [ 33 |33]3%
10 15 20 23 26 29 30 30 ’ 29 3t | a0
W | 15 | 2 | 2w |3 | 5o | oso | s |51
10 [ 16 [ 21 | 25 [ 28 30 | 31 | 42 4 3l 324 32
o| 16|21 | 25 7 |29 | 30 | 31 29 | 30 | e
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Table 7 (continued).

L S¢0. 0 (Divisiong) o
N PN Ao Y= Aen Yis Yo 2 Ao 2 2 s
a0 M| 522 muf =4 M w:G aar] 28 aar) 10 sen| 12 Anse[s 1A aa]s 216G ara ] ; i i
;7 | Jo | J6 | 20 | 25 | 27 ) 29 | 30 | 31 | 33 | 3333
10 15 | 20 2] 26 23 20 | 29 32|33
ig | 1o | 16| 22| 25 | 27 | 29 | 30| 31 | 3l |32 |3
9 16 22 25 | 27 28 29 | 30 | 37 | 32 | 32
o | Jo | 17 |22 f 25 ) 28 |30 | 3l f a1 | 38 |33 a2
I 17 22 25 27 28 30 32 3l | 33 |31
0 | 9 [ 16| 20| 25 | 20 28 | 29 | 30 | 3l | 30 |3
10 17 22 25 27 28 29 30 33 | 33 | 32
21 | o} 16| 20} 23 | 2 | 28 ) 30 | 3 | 3 |34 |
10 17 22 | 25 | 27 28 | 30 | 30 31 | 32 |31
92 | W [ 181 24 ) 27 ) 30 ) 311 32 ) 32 ¢ 31} 31 )3l
10 6 | 22 | 23 | 26 | 27 | 28 | 29 | 33 | 32 | 32
23 | 9| 35 | 20 | 241 271 29 ) 30 |"30 | 3l |32
9 14 18 2 | 7 38 | 29 | 30 | 33 | 3 { ;@
24 | 10| 17 | 20 |23 ) 2 | 28 | 30 |3 |3 |3 |3l
I 19| 28 | 27 | 29 | B B A 33 13|33
25 | 9|6 | 20| 24| 27 | 30| 3 | 32 | 3 |35|3.
1 1 | 21 21 | 27 29 | 30 | 3 32 | 33|32
\ 26 [ 10 | 16 | 20 | 22 | 24 | 26 | 27 | 28 | 3l |32 |33
10 17 | 23 26 | 29 30 | 31 30 | 32 | 33 |33
27 (10 16 | 20} 22 1 25 | 27 | 29 | 30 | 32 | 37 )32
10 17 22 25 27 28 30 30 3 | 33 |3
8 (10| 16| 20 f 24 27 | 30 | 31| 33 33|33
10 6 | 20 | 24 27 28 | 29 | 30 | 33 | 3 |32
29 | 10| ;7 0 2|2 | 29 | 30 | 32 | 3 |35 |3p|%
10 | 17 | 23 | 26 | 29 | 30 | 37 | 30 | 32 |32 |35
o | 0| v zz[zﬁ 37_'29 30 | at | 35 |3 |as
9 14 9 | 22 | 25 | 27 | 29 | 29 | 32 | 31 | 32
Remarks. 1. The numerator and denominator shows the manometer

readings when moving the east and west rails respectively.

2. The zero of the manometer is displaced by half a division,
SO0 that a manometer reading of n divisions corresponds to an
interval mg(n-1) - m_n of the values of thelongitudinal force

transmitted from the hydraulick jack to the rail, where m, = 160 kg,

Corresponding to one division on the manometer. Consequently,
the interval of values of the longitudinal force transmitted to
One tie (two half-ties) is mo(n—l)/S - mon/5. Here m = mO/S is

the limit of accuracy for computing the longitudinal force, m = 32 kg.
3. N denotes the experiment number.
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the mathematical expectation and the variance were computed for

the longitudinal force transmitted to one rail when it is displaceqd- |

by a fixed amount.

For rail displacements A > 20 mm, the force transmitted
to the rail did not go up as a rule, and instead oscillated as
the rate of o0il movement was varied. This can be explained by the
appearance, for large displacements, of sliding surfaces within
the ballast and the existence of sizable plastic deformations; in
addition, the appearance of creep is very obvious for large
displacements.

Let us turn our attention now to the analysis of the
experimental data. The columns of Table 7 represent the statistical
series of distributions of the random variables 5w(Ai,O).

Let us compute the statistical characteristics of the random
variables Sw(xi,O), and verify the agreement between the empirical
and the theoretical Gaussian distribution by means of the Pearson

2 2
x test". Special tables for the x distribution are available [30].

Making use of the tables, one can determine for every value
2
of x and the number of degrees of freedom r, the probability P

that the value of the random variable distributed according to the

"
L

x law will exceed that value. The number of degrees of freedom

2
r of the x distribution is the difference between the number of

interval ranges k of the statistical series and the number s of
constraints imposed on the empirically determined frequencies

Pji' The sume of the frequencies must be equal to one, i.e.
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cal

k *
I P =1,
j=1 i
and we will choose the theoretical distribution so that the
theoretical and the statistically determined mean values and

variances coincide, i.e.

&
/-21 5 (A, 0) Pl == My (4, 0);

1
3 57 b 0) — M5 (1 O] P = 0591, 0)

where ij(xi,O) is the "representative" of the j-th interval range
of the random yariable ¢(Ai,0); P*ji is the frequency of the j-th
interval. range (for ) = xi); and ki is the number of interval ranges.
The number of constraint;si imposed on the frequencies in this
case is equal to 3.
Let us note that the X2 distribution with.r degrees of
freedom is the distribution of the sum of-squares of r independent
random variables, each one of which obeys the normal law with

the expected value equal to zero, and the variance equal to one.

This distribution is completely characterized by the density

u
e ? npn >0

R, (u) = 23r(§) ,

0 npn u <0

S —— T} ]

©

where T'(a) = f_ g2 1

etdt is the well known gamma function.
Thus, let us compute the statistical parameters of the

distributions of the random variables w(xi,O).

For this casc the forces for which the rails begin to move

were fixed. Using the second column of Table 7, we construct
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the statistical series of the random variable 5y (0,0) (Table 8).

Table 8
. T
njo - manometervreadlng 8 9 10 11 12 .
—
Ijo - interval of force 1120~ 1280- 1440- 1600~ 1760~
values transmitted to 1280 1440 1600 1760 1920
the rail
—_—
Njo - number of occurrences 1l 9 41 8 1
in each interval
Pjo - frequency of :
occurrence in each
interval 0.017 0.150 0.683 0.133 0.0li;l

Let us compute the expected value of 5y(0,0):

. :
M5 (0,0) == 3 5,(0, 0) Pjp = 1200-0,017 -{- 1360-0,150 -
’ =1

--1520-0,683 -|- 1680-0,133 -|- 1 840-0,01 7-=1518kg,

from which

My (0,0) = é M5y (0,0) = % 1518 = 506 kg.
The variance of 5¢(0,0) is given by

"B
3590,0)~ 3, [5%,0,0)— M54 0. 0] 1o -
== (1 200 — 1 518)2 0,017 -- (1 360 — 1 518)2 0,150 |-
+ (1520 — 1 518)2 0,683 -}- (1680 — 1518)2 0,133 -4~
+ (1 840 — 1 518)2 0,017 == 10650 kg2_

From this we can compute the variance of ¢(0,0):

1

39(0, 0) = 4 350, 0) - % 10630 - - 2130 kg2

2. X. = 2 mm
i
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'60~
920

017

From the third column of Table 7 we construct the statistical

series of the random variable 5y (2,0) (Table 9).

Table 9
ny, 14 15 16 17 18 19
Ipg oo oo v 2080— | 2240— | 2400— | 2560— | 2720— | 2880—
2 240 2400 2 560 2720 2880 3040
Ny oo o 3 10 28 15 2 2
P;,- « .7 +. .. 0,050 0,167 0,467 0,250 0,033 0,033

Let us compute the mathematical expectation of ¢(2,0):

. _
M5y (2, 0) == Ig}‘ 5¢,(2, 0) P}, - 2160-0,030 -- 2320-0,167 -

+2480-0,467 - 2640-0,250 - |- 2800-0,033 -- 2 960-0,033--2 492Kg ..

" We find the expected value to be

My(2,0) = & M5¢(2,0) = 3 2492

500 kg.

The variance of 5y(2,0) is given by
' s . -
A5y (2, 0 == 3 [51,(2, 0) - May 2,07 P
i=

= (2160 — 2 492)2 0,050 - |- (2320 — 2 492)° 0,167 -
(2480 —2492)2 0,417 - (2640 — 2492)2 ’
5 0,250 -|- (2 800 — 2 492)0,033-| (2 960 — 2492)0,033 - 31 840 kg .

The variance of y(2,0) is

|

2 !
35y (2,0) = = 31840 = 6368 kg . i

v (2,0) = 5

5

3. Ai = 4 mm
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On the basis of the fourth column of Table 7, let us construct

the statistical series of the random variable 5y (4,0) (Table 10).

Table 10
"/‘ 18 19 20 21 22 23 24
e - . .| 2720—| 28s0— | 3040— | 3200— | 3360— | 3520— | 3680—
2880 3040 3 200 3360 3520 3680 | 38&10
A’j‘ PR 2 I Ig lG 12 7 3
P; .. .| 0,033 | 0,017 0,317 0,267 0,200 0,116 0,03
[] -

The expected value of 5y(4,0) is given by

M5 (4, 0)--2800-0,033 -/ 2960.0,017 - 3120.0,317 - 32504
% 0,267 - 3440-0,200 -i- 3600-0,116 -1-3760-0,05 3302 kg.

We find the mathematical expectation of y(4,0) to be

My(4,0) = £ M5y(4,0) = %- 3 302 = 660 kg.

The variance of 5¢(4,0) is

S, (4 0y — M5y (4, )1 P,

7
95y (4,0)- - X
i
= (2800 — 3 302)20,033 | (2960 — 3302)20,017 -
4 (3120 — 3302)2 0,317 -] (3280 -- 3302)2 0,267
+ (3440 — 3302)2 0,200 -|- (360U — 33022 0,1 11; -
+ (3760 — 3 302)* 0,05 - 45570 kg

Thus, the variance of ¢(4,0) is
45 570 = 9 100 kg

-

2v(4,0) = £ 35¢(4,0) =

4. X, = 6 mm
i

Making use of column 5 of Table 7, we c¢onstruct the statistical

series of the random variable 5¢(6,0) (Table 11).
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Table 11
nj, 21 22 ‘23 24 25 26 27
716__- 3200— 3'360— 3("5204-- 3680— | 3840~ | 4000— | 4160—
3360 35620 3680 3840 4 000 4160 4320
;\k‘ja R M”'| T 5 15 | 10 | 20 5 4
I;;, (.1 ;)‘ITYTVO,OBS | 0,250 0,167 0,333 . 0,083 0,067

The expected value of 5¢(6,0) is given by

A . o
Mo (6, 0) = I)j 5 (6,0) Py = 3280.0,017 }- 3440.0,083 -|-
=1

23600-0,250 1-3760-0,167 1- 3920.0,333 -|- 4080-0,083 -
-f- 4 240-0,067 -~ 3796 kg.

Thus, the expected value of v(6,0) is
M (6,0) == 5 M5} (6, 0) 1379 = 7609 -
The variance of 5y (6,0) is

. .
051 (6, 0) ‘I)) 59, (6, 0) — M5 (6, 0)]* Pjs =
=

(3280 — 3796)20,017 |- (3 440 — 3 796) 0,083 +

|- (3600 —- 3 796)2 0,250 -I- (3 760 — 3796)2 0,167 +

1-(3920 - - 3796)2 0,333 - |- (4 080 --- 3 796)2 0,083 -~
- (4240 — 3796)20,067 = 50030 kg.

The variance of ¢(6,0) is

o - . 2
ap (6, 0) - --:)-().‘)\])(0, 0). . é-.ﬁ()():lf) 10000 kg

5. A. = 8 mm

1
Table 12
s 21 25 26 Y. ‘ 28 i 30
/,'s 3680-- | 3810-- 4 000~ 4160-- | 4320 - 4180 -- 1640—
3810 4 000 4160 4320 4 480 4610 4 800
Vg 3 5 15 22 6 6 . 3
Pis .. 0050 | 0,083 | 0,250 | 0,367 | 0,100 | 0,100 | 0,150
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The expected value of 5y (8,0)

7
M5y (8, 0) = X 59;(8, 0) Pjs == 3760-0,050 -|- 3920.0,083 -|-

/=1

4-4080-02504~4240-&3674-4400-0J00 [-4560-0,100 4-
- 4720.0,150 -.- 4 222kg.

The expected falue of y(8,0) is

o | .
/W‘lp (8, 0) = —15— M5'lb (8, 0) = -5*‘ 4 222 == 844 kg o
The variance of 5y(8,0) is given by

7 |
95 (8, 0) = X [5%,(8, 0) — M5 (8, 0)]* Pis - -
=l
-~ (3760 —- 4 222)20,050 -}- (3 920 — 4 222)2 0,083 -|-
~L(408O—~422®20250~L(4240—~422%203674-
W-(4400-—-4222V(L100~L(4560-—-4222V(%100—F
-L(4720——422m20050::506&)kg

The wvariance of ¢(8,0) is

1

(8, 0) ~ = 95 (8, 0) == é 50 660 - 10300 kg.

6. X, = 10 mm
. 1

From column seven of Table 7 we construct the statistical

of the random variable 5¢(10,0) (Table 13).

Table 13
e 25 26 27 PY I 290 30 31
Livo - - .| 3810— | 4000~ | 4160 - | 4320 | 1150 - | 1610. | 1800 .
4 000 4 160 4420 1 480 1610 4 800 4 960
P 4 7 18 15 9 6
Plig .| 0,07 [ 0,006 [ 0,117 | 0300 | 0.250 | 0,130 | 0,100
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The expected value of 5¢(10,0) is equal to

: LA .
- M5y (10, 0) = 12 5¢, (10, 0) Pjjo = 3920-0,017 -{- 4080-0,066 -
=] . .
+4240-0,117 - 4 400-0,300 +- 4 560-0,250 -|- 4,720-0,150
+4880.0,100 -+ 4489 kg.

We determine the expected value of y(10,0) to be

My (10,0) = + M5y(10,0) =

(S21h

4 489 = 900 kg.

U

Now we can determine the variance of 5y (10,0)

7 ' .
059 (10,0) == 3 [5%,(10, 0) — M5y (10, 0)]* Phio =

— (3920 — 4 489)20,017 -+ (4 080 — 4 489)20,066 -+

- (4240 — 4 489)20,117 - (4400 — 4 489)20,300 -+

+ (4560 — 4489)20,250 - (4720 — 4 489)20,150 -
- (4880 — 4 489)20,100 = 51660 kg~ .

The variance of ¢(10,0) is

2
9y (10,0) = % 959 (10,0) = % 51 660 = 10 600 kg .
7. A. = 12 mm

1

Making use of column 8 of Table 7, we will construct the

statistical series of 5¢(12,0) (Table 14).

Table 14
Ny 26 27 28 29 30 HE g2 8
e o -] 4000|4160 4320 | 1480~ | 1610 | amoo | 1060 | 5120 -
4160 | 4320 | 4480 | g6t dwon | sosal o nyen | 5use
Py, - | 0,050 | 0,034 0,066 | 0,200 | 0,381 | 0,150 | 0,066 | 0,050
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The expected value of 5y (12,0) is equal to

8 .
M5p(12,0) = X 5¢,(12, 0) Pji2 = 4080-0,050 -+ 4240-0,034 -
/=1 ’ '

- 4400°0,066 - 4 560-0,200 -+ 4720-0,384 -i- 4 880.07150 -
+ 5040.0,066 -- 5200-0,050 . 4 681 Kg.

We find the expected value of ¢$(12,0) to be
My(12,0) =4 M54(12,0) = £ 4 684 - 937 kg.

The variance of 59(12,0) is equal to

' 8
a5y (12, 0) = 12 (5%, (12, 0) — M5y (12, 0)]° Pji» =

=1
— (4080 — 4 684)20,050 -|- (4 240 — 4 684)20,034 -
+- (4 400 — 4 684)2 0,066 - (4 560 — 4 684)2 0,200 -+
+ (4720 — 4 684)2 0,384 - (4 880 — 4 684)20,15 -
+ (5040 — 4 684)2 0,066 - (5 200 — 4 684)* 0,050 = 63 640kg“ .

The variance of $(12,0) is
2

2p(12,0) = & 35¢(12,0) = % 63 640 = 12 700 kg2.

8. Ai = 14 mm

Making use of 9th column of Table 7, we obtain the statis-

tical series of the random variable 5y (14,0) (Table 15).

Table 15
i 27 28 29 30 31 32 ' K] 34
L oo 4160 | aseo— daso [ 4610 | 1800 | 19001 5 120 5 os0m
. N . st AT A (s O‘
4320 4180 4610 1 800 1960 5120 ,.") 280 )5 440
Njig .. I 4 8 17 15 8 4 3
Py - .| 0,007 | 0,066 [ 0,133 0,284 | 0,250 | 0,133 ( 0,067 | 0,050
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Let us determine the expected value of 5y(14,0)

M5y (14, 0) = zsw,(m 0) P}14 = 4 240-0,017 -}- 4 400-0,066 -

"~ 44560 0]33 -|- 4720-0,284 - 4 880.0,250 -|- 5040 0,133 +
- 5200-.0,067 -- 5 360-0,050 == 4817 kg,

The expected value of y(14,0) is

1

My (14,0) = 3 MSw(l4,0) = 4 817 = 963 kg.

=

Now let us compute the variance of 5y (14,0)

\ , .
05y (14, 0) = Ig)l [5%, (14, 0) —M5y (14, 0)]* P]1s =

= (4240 — 4817)20,017 -+ (4 400 — 4 817)2 0,066 --

+ (4560 — 4 817)20,133 - (4 720 — 4 817)2 0,284 -

+ (4880 — 4 817)2 0,250 - (5040 — 4 817)2 0,133 -
+(5200—-4817)20 067 - (5360 — 4 817)? 0,050 == 60 580 kg

The variance of ¢(14,0) is

1

2
oy (14,0) = 5 a5y (14,0) = 60 580 = 12 116 kg .

(S0 =

1 9. A, = 16 mm
1

Column 10 of Table 7 yields the statistical series of the

random variable 5¢(14,0) (Table 16).

Table 16
m 29 30 31 42 ' kK] 34
Dne - | 4480 [ 4680 | 4o~ | 910~ | arzo— | a2m0 | 500
4640 | 4800 1910 5120 5 280 5110 5600
;lea H 5 20 ’ 12. ' 11 6 4
Phe - - 0,083 | 0,100 | 0,267 0,200 l 0,183 | 0,100 | 0,067

The expected value of the function 5¢(16,0) is
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, .
M5y (16, 0) = 3 5¢ (16, 0) P, ~= 4 560 0,083~ 4720.0,100 ~-
/=1

1-4880-0,267 - 5040-0,200 -}- 5200-0,183 - 5 360-0,100 —
-+ 5520-0,067 = 5085 K9g.

The expected value of ¢(16,0) is

My(16,0) = & M5y(16,0) = 3 5 085 = 1 017 kg.

Let us compute the variance of 5¢(16,0)
. ;o
059 (16, 0) = /§ (51, (16, 0) — M5y (16, 0)]* Pjy6 =
= (4560 — 5085)2 0,083 -I- (4 720 — 5085)2 0,100 -
+ (4 880 — 5085)2 0,267 -|- (5040 — 5085)2 0,200 -
+45200-—508@20J83-L(5360——508&2%100ﬁ-
. 4 (5520 =~ 5085)20,067 -- 60020kg " .

The variance of ¢(16,0) is equal to

20 (16,0) = = 5y(16,0) = £ 60 020 = 12 000 kg.
10. A, = 18 mm

i
The statistical series of the random variable 5y (18,0),

computed from column 11, Table 7, is shown in Table 17.

Table 17
e 29 30 31 32 33 KE] 35 36
T o - | 4480 <] 4610 - aso0 | a0c0—| 5120 ] 50 -] 51410--| 5600~
4610 4800 4 960 5120 5980 [ S5410) 5600 | 570y
Nos . . 4 4 10 15 15 7 3 2
Pry | 0,067 0,067 0,166 | 0,250 0,250 | 0,116 0,05 | 0,034
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The

The

The

The

The

shown in

mathematical expectation of 5y(18,0) is

B ~ L]
M5¢(18,0) = 3} 5%,(18,0) Pj1s == 4560-0,067 4-4 720-0,067 -

-} 4880.0,166 +- 5040-0,250 + 5200-0,250 - 5360-0,116 -
"~ 4 5520.0,05 - 5680-0,034 == 5084 kg.

mathematical expectation of y(18,0) is

My (18,0) = %M‘p(lB,O) = -_,1; 5 084 = 1 017 kg.

variance of 5¢(18,0) is given by

8 ~ L)
359 (18,0) = ¥} [5¥, (18,0) — M5y (18,0)]°P]ia == (4 560 — 5 084)2

"X 0,067 + (4720 — 5 084)20,067 -} (4 880 — 5 084)2 0,166 -
+ (5040 — 5 084)2 0,250 - (5200 — 5034)2 0,250 + (5360 — 5 084)? |
% 0,116 - (5 520 — 5084)2 0,05 - (5 680 — 5084)2 0,034 = 68 450 kg2 .

variance of ¢(18,0) is
= 1 _ 1 = 2
oy (18,0) = T 35y (18,0) = 5 68 450 = 13 690 kg“.

11. Xx. = 20 mm
i

statistical series of the random variable 5y (20,0)
Table 18,
Table 18
Bl 29 30 3'l 32 33 34 35 36
Jisy - . .| 4480—| 4640—| 4 800— | 4960—| 5 120—| 5 280—| 5 460—| 5600
4640 | 4800 | 4960 | 5120 | 5280 | 5460 | 5600 | 5760
Npoo - | 4 5 | 8 18 15‘ 5 2 3
Pl - | 0,067 0,083 | 0,133} 0,300 o,;;b 0,081 | 0,033 | 0,050
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Let us determine the expected value of 5y (20,0)

M5 (20,0) = ZS\!:(?OO ) P20 == 4560-0,067 -I- 4 720 x

/0,083 - 4830-0,133 4 5040-0,300 - 5200-0.230 -~ 5300.0,081 -
4-5520.0,033 -1 5680- 00>r) -2 5086 kg.

The expected value of ¥(20,0) is

My(20,0) = £M5y(20,0) = £ 5086 = 1017 kg.

The variance of 5¢(20,0) is given by

8 ~ 2 . o - Ry
()5\1) (20,0) =z 2} [51]1, (20,0) — AIS!I/ (20,0)] - Pl‘g() 2 (4 o060 — 5 08())-' 7
J=1 .
% 0,067 -- (4 720 — 5086)* 0,083 -|- (4 880 — 5086)20,133 -

1 (5040 — 5086)2 0,300 -}- (5200 — 5 086)? 0,250 -i- (5 360 — 5 086)?
x 0,084 -+ (5520 — 5086)* 0,033 -~ (5 680 — 5 086)2 0,050 -
= 6759 kg?

The variance of ¢(20,0) is

39 (20,0) = % 35% (20,0) = % 67 595 = 13 500 kg2.

Thus we have obtained the expected values and the variances

Table 19

of the random variables w(xi,O) for different values of the dis-
placement A;- Now let us verify that the distribution of the
random variable Sw(Ai,O) is normal, by using the xz test. For
the random variable 5y(0,0) this test is not applicable, since
there are really only three interval ranges and the number of
degrees of freedom in this case is zero.

Results of the application of the x? test for the other
values of the displacement are shown in Table 19. In constructing
the table several of the interval ranges were combined so that
the number of occurrences in each interval would be at least three.
Column 4 of this table contains the theoretical frequency values

Pj computed according to the formula

5971 (A, 0) -~ MOy (2, 0)
Pr= 2 1<~“ )’ ()o-\r(?‘, )
1 o (-{)_\]-, (2 0) — MBS (21, 0) )
2 ] 05 )1] ( 0y, '
t -s?/2

where ¢ (t) = vV2/q7 /e ds is the well known integral of Laplacﬁ
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Now, having the values of x2 and r for each Ai, we can use
Table 6 in Venttsel's book {9] to find the probability that the
value of the variable which obeys the x? law will exceed this

value. The results obtained are summarized in Table 20.

. .. Taple 20 ]
b a| oo ¢ 4 6 8 10 12 14 ‘ 16 ( tb o
2 [ —(4.41 5,27 | 7,65 (559 1,91 | t4,60 1,85 5,95 | 7,77 | 1 §
r 0 2 3 3 4 3 4 4 4 ) 4 1
P I —10,1})014 0,06 | 0,24 | 0,60 { 0,005| 0,76 6.20 \ 0,10 } 0,3;

Except for the distribution of the random variable 5y (12,0),
all the other distributions coincide with the Gaussian distribution
since the threshold for agreement is usually taken to be
P = 0.05.

In general, distributions are considered not coincident
if P < 0.001, so that the guestion concerning the agreement of
the distribution of the random variable 5¢(12,0) with the normal
distribution is a doubtful one. The poor agreement for the dis-
tribution of 5¢(12,0) is probably caused by experimental errors;
this explanation seems to be reasonable since the point 35y (12,0)
falls off the curve of the variance of the random function Sw(ki,O).

Figure III.4, a and b, shows the graphs of My(1,0) and
3y (x,0), constructed from the experimental data.

In conclusion, let us note that in view of the poor accuracy
of the measurements, the graph of the variance of the random
function y(1,0) cannot be considered to be completely reliable.
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2. Experimental determination of the expected value of the
*
function £(6,) ) for the case of second loading

The goal of this series of experiments was to demonstrate
the character of the variation of the load transmitted from
the rail to the tie, due to a displacement of the rail which had
previously been displaced in the opposite direction by A*mm.
The experiments were carred out in the summer of 1958 at the
track stub of the Tsaritsin station on the Moscow line, on
the same experimental stand which was used for the determination
of the statistical characteristics of the function ¢(A,0). The
stand was preserved intact, so that the track parameters remained
the same: P50 rails; wooden ties, 1840 per km; ballast of
crushed stone of medium hardness; fastenings of type K.

In the course of the experiment five ties were displaced

simultaneously. The following procedure was followed: the track
*

was displaced by an amount Ai by means of a hydraulic jack equipped

with a manometer, with a calibration of 160 kg per division; the
jack was then moved to the other end of the rail, and the force
transmitted to the rail was adjusted after every 2 mm of displace-
ment, the initial force being considered that which initiates a
displacement. (This first reference point cannot be considered
reliable.) A displacement was produced in each rail line in turn,
after which the experimental set up was restored to its original
state and the experiment was repeated. For each of the values

A* = 4,8,12,16 and 20 mm, both rails were displaced five times.
The experimental data are reproduced in Table 21, with the even

numbered experiments corresponding to displacements of the west-

ward rail, and the odd numbered ones to those of the eastward rail.
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Table 21

| U
R I D T = ) = & =
T N o X} r > « -— — : s ﬁ e
1 ] i ] ] ] ] g ] 1 1
1 T I 1 [ 4 b4 ey 1 T 1

|16 21 261 34 371 421 44 46| 50 49| 50

|
2 5 26 28 34 37| 43 44 46[ 49 49| 49
3 16 25 28| 35| 38 43| 46| 47 50 50| 50
4 16 27 25| 35| 37[ 44| 46| 18] 50 50| 50
4 5 14 26 28| 36| 38| 44| 46] 47 50, 49| 50 :
6 16 26 29| 35 38 44 47 48 50 51| 50
7 17 28 28/ 35| 38 44| 46| 48] 52| 50[ 52 o
8 17 26 27| 35 38 45| 46/ 48] 50 51| 52
9 16 26 271 37| 371 44| 46| 49 32| 50| 50
10 16 27 28| 38| 38 44 47 48] 521 49 52

10

DN 159 261 274 354 376| 437| 458 476] 505 498] 505

: -

SM/f, (8, 4)| 2550] 4180 1 38015670 6 030 7 000; 7 350( 7 640 8 100| 8 000 8 100

| 15 24 28] 30| 32| 39 413 48 50 521 54
2 16 24 29 3l 33 39 43] 419 50, 51| 58
3 16 25 281 320 34 39 43| 49 5l 51 54
4 17 24 300 32) 3 40, 44 50[ 51 53 55
3 5 17 25 281 32| 23] 391 45/ 50| 4l 53] 55
¢ 6 15 25 30 3l 34 40 45 SISl 53 B3
7 16 25 301 33| 34 40/ 45 50[ 5H0[ 54 54
8 16 25 301 32 34 40| 46 501 52[ 55 56
9 16 26 30 32 35 41 47) 50 52 53] 56
10 15 25 30| 33] 35 40, 48 5l 52 B3| 57
10 .
)_l)qj 159 248(. 295 318] 338 397| 449 498 510 528] 549

SM[ (0, 8)] 2550 3980 4 730[ 5 100 5 420{ 6 360[ 7 200] 8 000| 8 170| 8 460( 8 800

16 27 33 38 38! 39 421 49 55 59 6l
17 28 34 37 38 40 4] 50 56] 60 62
17 29 34 371 39 40 41 48 570 89 61
16 28 gs| 37 39| 41| 43| 50| 56 59 59
17 28 34 38 38| 40 131 a0 57 62| 6l
27 321 38 371 39 421 S0l S6[ 621 59
15 29 331 39 39 40 42| 5l 561 59 61
15 28 33 401 40(  4l] 43| 521 55| 60 65
16 28 -3 37 39 40| 4l 521 a8 6ol 62
17 26 31 36 390 40, 42[  50[  suf 61 6l .

CCONCTI =W —
o

386; /10()‘ -12()} 5021 o6 597 610

335, 377

Yy 164] 278

M0, 12| 2e20) 1150 5370]6 010)6 1806 1000 6 7200 8 010 9 ool 9 560] 9 760

N: experiment number.

* 3 .
The values of £(6,) ) correspond to manometer readings i
divisions.
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Table 21 (continued)

o [ : [ (1, 2%)
e, xu ., © o~ - @ w 2 = hul = pu I
N, i 1 1 8 ! ! ¥ & r ' 1
o= 1 T T 1 T 1 1 1 2 1
| 17| 27| 31l 36| 39| 39| 40| 40l 41| 48 3
2 6 26 33 ac 39 300 40 40, 43| 0 3
3| 16| 23| 30 37| 39| 0 41 42 43 51| 5
4 16 26| 32 37 40 41‘ 42 43 44| 50 35
6 5 17| 26| a3l 36l 38| a0 a0l 40| 4] il 5
! 6 sl 270 3| 37w m| a1 0 42 50l 5
7 14| 26| as 6 ar| as| 40, a0 41| a8l ®
8 6] 27| A a8 0 41 42 4| 4z 49 G
9 il 28| @l as| ael an] a3 4] adl sl i
10 17 28 33 K1 49 43 41 45 45 Y 1
10
Yq; 61| 206| 323 3co| sv7| 401] 413 414] 426 S00| 520
1

5Mf, (8, 16)| 2580( 4260| 52005 900| 6 350( 6 470( G 620! € 630| 6 820 8000} 5460

I sl 33l 36| a7l 40 39| 420 40 40| 40| 4

2 15| 33| 36| 371 40 40| 42| 40 41| 42} 43

3 6] 31| 371 38| 40| 40 43| 41| 42| 43 43

4 17| 34| 38 40 4i| 41| 42| 43 42| 42 o

5 171 33| 38| 30| 41l 42 " 42] 42| 43 4] 4

20 6 17| 34| 38| 40| 42| 42| 43| 43| 43 41| 43
7 171 34| 39 41| 41| 43 43] 43 a3 44| 45

8 18| 35| 38| 42| 41| 41 .43 a1 44 4] 4

9 18| 36| 30| 43| 42| 44| 41| 45| 45| 44| 41

10 19| 37| a0l 43| 41| 43 44 45| 46 45| 46

. Iééq/ 160! 313! 380 400| 4d0o| 41g| 428] 426] 420| ‘avo| 437 !
1

5Mf,(8,20)] 2710} 5500 6080'640(1 6 550( 6 700 6 870} 6 830| G 8GO| G 8GO] 7 000
|

At the end of each series of experiments carried out with a
fixed value of the prior displacement AI, the sums }0 g. of the
measurements of the force transmitted to the rail b% the hydraulic
jack are obtained for all values of the displacement 6, and, on
the basis of these sums, the values of the function Mfl(e,xz) are
computed according to the formula

10 10
. m
ML (0, 11) =0 g, 163 gy
11

I=1

where m, = 160 kg, ocrresponding to one dividision of the manometer
scale.
Let us recall that in the absence of any load the manometer -

reads half a division.
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Making use of the data in Table 21, one can construct the
* .
graph of the function 5Mfl(e,xi). Such graphs are shown in
Figure III.S.

8" kq .

10000 "
L'“' """ 1 -
0 B B e g g
o o -
T B == e I
5000 |-—— P o :_;ﬂ_.’/,(. — J— —
A
.'_.' A
%000 //gr""— --= — - e
2000 —— —_— e
0 2 4 & [ 10 174 14 16 18 §,m1
. , * *
Fig. III.S5. Graphs of the function 5Mfl(e,xi): — X = 4 mm;
* % *
—_—— A = 8 mm; T X =12 mm; -o- A = 16 mm; - X - X = 20 m,
*

Finally, making use of the graphs of My(x,0) and Mfl(e,xi),
shown in Figures III.4a and III.5, let us construct the graph of
My (A, AI) for the case of the second loading according to the
formula

* *
Mw(x,xi) = My(r,0) - Mfl(e,xi).

The graph of the function W(X,A*) for the second loading
is shown in Figure III.6.

. __Ty'.(M‘), kg,

800

V¥

*

* *
Fig. III.6. Graphs of the function y(A,x ): — A = 4 mm;
* * *
-==x = 8mm; °°° X =12 mm; -0o- A = 16 mm; -%x- » = 20 mm.

It is not without interest to note that for » = 0 all the

*
curves w(A,Ai) have approximately equal values. Physically, this
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20 &=,

corresponds to the fact that beginning with the point A = 0, the
tie displacements will take place in ballast which preserves its
structure, independent of the prior displacements.
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3. Determination of the linear resistance of continuous welded

rails in station tracks with simple fastening assemblies

In April 1959 the author carried out experiments at the
station Lublino on the Moscow line to determine the linear
resistance in CWR track. These experiments were carried out on
the operating first track of an unsymmetrical hump, on two strings
of welded rails, 627 and 514 meters long. The ballast on this
experimental section of the track consisted of very dirty sand,
highly packed, and covering the ties above the upper bed level.
Rails of type P50 were welded by the thermit process; there were
1600 tieé per km. The track was anchored against creep by means
of wedge-shaped anticreepers, installed in one direction at every
tenth tie, and opposing the creep uphill. The force from each pair
of anticreepers was transmitted to 5 ties connected together by
spacers. Well worn tie plate fastening assemblies were used.

The resistance was determined by two methods, neither one of which
gave a high degree of accuracy with the measuring devices employed,
so that the results of the experiments can be examined only as
averaged results.

First method. Determination of the linear resistance in

rail strings by making use of the second derivaties with respect

to the temperature of the displacements of the ends of the rail

strings. The method is based on the following considerations.
Suppose a certain distribution of longitudinal rail forces in the
track is produced by the first loading. (Fig. III.7). Let us
assume that the linear resistance at every point of the track does

not vary with the displacement.

oIt et

NN U
w

| -y

x

Y —dule- d

- {f -

Fig. III.7. Longitudinal forces in the "transition" zone
of the end of a rail string, assuming the linear resistance
does not depend on the rail displacements.
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At a distance &, the length of the "transition" 2zone of the
rail string, the longitudinal force is P = atEF.

Suppose now that the temperature of the string has been
raised by an amount dt; then the longitudinal force in the
middle portion of the rail string is increased by «EFdt, and the
end of the string is displaced by an additional amount, equal, to
within a multiplying constant EF, to the shaded area in Figure III.7.
Thus,

1

d)\o = ﬁ LaEF dt = O.Rdt,

or, dividing both sides of the equation by dt, we obtain

dh
i = (III.1)

Differentiating this equation, and taking note of the relation

dl

——-Aa .—-]-;_
dt

EF AR

where p (%) is the linear resistance at the point x = &, we obtain

LY

i Y (I11.2)

L
o(l)

From this we obtain the expression for the linear resistance
at the point x = &:

/ erll A»gﬂﬁﬁAlﬂ'
QU A (III.3)
des

Herc A?) is the second difference of the displacement of the

free end of the rail string, and At is the temperature increment.

According to (III.l), the guantity 2 can be found from
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Let us note that if p (%) = p, = const, integration of (III.2)

yields
otEF

Po

)‘0 . tz.'l- Clt'l"‘ Cz- (III.4)

Differentiating this expression and making use of (III.1)

gives
a’EF

+ cl = af,

o]

however, for t = PH/aEF we have 2 = 0, from which it follows

that
~ aPH .
Cl - -
pO
Taking into account the condition AO(PH/aEF) = 0, we can

determine

c2 - PH

2pOEF !

after which (II1I1.4) takes the form

_a!EF P, \?
o= o 0'7aEF)'

Solving this equation for t, we obtain
c l //'5—-j". P,
£ a l EFT ol

i.e. we arrive at the previously obtained equation (II.32).

Let us note that our method is based on the assumption

that the linear resistance at every point of the rail string does
not depend on the displacement of the rail, so that the method is
applicable only to investigations of track with well worn spike

fastenings and without additional rail anchors, i.e. to the case

when the linear resistance is determined by frictional forces

between the rail and the tie plate.
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During the experiment, tbe displacement of the ends of the
rail strings was fixed by means of dial gauges (accurate to 0.003 cm)
after every two degree rise in the rail temperature. The temperature
was measured by means of a mercury thermometer graduated in 0.5°C.
Every day, before the experiments were carried out, the
spikes in the experimental section were pulled up, the joint
bars were disassembled, and wooden sledge hammers were used to
eliminate the residual stresses in the rails; after this the
spikes were driven in again, and the joint bars were bolted to
the rails. At the time when the strings of rails were fastened,
the positions of the ends were fixed, and were taken to be zero
from then on.A
The results of the measurements, and computations based on

formula (III.3), are shown in Table 22.
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Table 22

e
o~ (‘
£ La] < [N
North < d O R Y &
D end < | = 2 = p s
~ < < < < - ¢
4 2 | 0,027 | 0,000 0,030 | 1700 | 2.5
16 2 1 o067 {0,070 {0,027 | 2960 | 2.8
18 2 (0,137 0,007 | 0,027 [ 4100 | 2.6
R 20 9 o231 01210005250 | 2.4
_ 54 29 2 |o3ss o5t | 0030|6530 | 2.5
(2= 514 M) | oy 2 lo'sie| o8l | 0033|780 | 2.3
26 2 |o0.5% | o027 - — =
15 June 28 — (o8B} — ' - N
1959 r. 14 2 10,027 | 0,080 | 0,033 | 1700 2,4
16 2 | 0067 | 0073|0033 3100 | 2.3
18 2 |00 0,106 | 0,030 | 4500 | 2.5
L | 20 2 | 0246|0136 0,030 5770 | 2.5
(2627 ) | 22 2 |o3s2| 0166|0027 | 7010 | 2.8
24 2 |osi8|0103|0,0%|81i8 | 2,5
26 2 0,741 | 0,223 | — - =
28 — |o96t| = — _ _
12 210,036 0,016 [ 0,033 | 1950 | 2,3
14 2 0082|0079 | 0,033 3350 | 2.3
16 2 |ol16l|o.112] 0033|518 | 2.3
R 18 9 loemlotalooolelso | 2,5
20 2 | 0418|0175 | 0,030 7420 | 2,5
(z= 514 m)| 22 2 | 0593 0,205 | 0,027 | 8700 | 2.8
24 2 | 0798|0232 0,030 9&0 | 2,5
26 2 | 1.0%|022| — — -
6 Ju 28 Z e = | — — —
1930 RS 12 57770,030 | 0,013 [ 0,030 | 1820 | 2,5
: 14 2 |o0073|o0,073|0.030|3090 | 2.5
16 2 0146|0103 | 0,033 | 4370 | 2.3
I, 18 2 o210 )0136|0.027 5770 | 2.8
20 2 | 0385|0163 0,027 7090 | 2,8
(z=627 ») | 22 2 0548 0,190 0,030 | 8060 | 2,5
24 2 0738 0.220| 0027|9310 2.8
26 2 10958 0,247 | — — _
28 — |1208]| — — — —
4 20,027 [ 0,013 [ 0,033 1800 | 2.3
16 2 |0070) 0,076 | 0,030 |3220 | 2.5
18 2 |o0146 | 0,106 | 0,027 | 4510 | 2,8
R .20 2 |0,25210,133| 0,030 | 5640 2,5
(z =514 m)] 22 9 10385 | 0,163 | 0,030 | 6920 | 2,5
24 2 05180193 — = i
h 26 - ' 0;7_4 l_ .= - ! R
171515‘;!;('—_""' 4 3 T0,087 | 0017 70,030 | 200 | 2.5
‘ 16 2 |o08t] 0,077 00303960 | 2.5
18 2 [ 0,16 | 0,107 | 0,033 ¥510 | 2.3
L 20 9 L2681 0,040 | 0,020 1 5950 | 2,5
(2--627 ») | 22 9 | 0,408 | 0,170 | 0,033 1 7220 | 2,3
24 2 0,578 | 0,203 - - - —
26 - |o8| = ~ . --

Remarks.

did not impede their displacement.

D

date of experiment
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. R and L denote right and left rail strings.
The rail strings were fastened in such a way that the rail anchors




‘Let us compute the mean value of the linear resistance of
track with spike fastenings, for the case when the rail anchors

do not impede the displacement of the rail strings:
n

L
0 1° _ 10.2,3 + 18.2,5 + 8.2,8 _ 2,51 kg/cm
a n 36

The above method cannot be applied to determine the linear
resistance in track which has rail anchors to prevent the
displacement of the rails, since in this case the ties will be

displaced, and this results in a variable linear resistance.

Second method. Determination of the linear resistance in rail strings

by making use of the second derivatives of the displacement with

respect to the length. The method is based on equation (III.25),

dii | . _
g = 9EFax Y O = EFr )
where p(A) = ¥(A,0)/24x is the linear resistance of the rail string

during the first loading.
Substituting differences for derivatives in this equation,

and solving it for p(A), we obtain

_ EF 2 (II1I.5)
p (A) —szA)\.

Here A2) is the second difference of the displacement of the
rail cross-section.

Since the accuracy in computing A%\ is m, = 0.003 cm (accuracy
of the gauge), the accuracy in computing the linear resistance is

m, = 0.003 EF/A x2.
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When the accuracy of computing the linear resistance is

m,<0.2 kg/cm, which yields a relative error of less than 10%

2
the guantity Ax must satisfy the ineguality

A\:>l/EF . \/21 0003 1410 e

In this case, the distance between the cross-sections at
which the rail displacements were measured was taken to be
Ax = 1500 cm. The arrangement of the dial gauges and the

numbering of the stakes is shown in Figure IITI.S8.

i _.Lliﬂl(n 5}'7~ r<
Fig. IIT.8. Arrangement of the dial gauges; I -~ dial gauges;
IT - end of the rail string; 1 - 5, n - number of the stake

As in the experimental set-up for the first method,
some preparatory work was carried out before each experiment.

The position of the stakes was fixed at the time the rail
string was installed in the track, and was taken to be zero
subsequently.

The dial gauge reading were taken during the day, at the time
when the temperature was at its maximum. The results of the
measurements, and of the computations according to formula (III.5).
are shown in table 23,

The mean value of the linear resistance is given by

n

Lp

1 13.2,39+18.2,57 + 9.2,75 2,55 kg/cm.
pa = = =

n 40
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Comparing the mean values of the linear resistance computed
by the two different methods, we see that they are of the same order
of magnitude.

Let us note that for both methods the linear resistance was
averaged over x, utilizing the ergodic property of p(x).

At the southern ends of the rail strings the rail anchors
impede the displacement of the rails with respect to the ties;
consequently, the ties are displaced in the ballast, and the linear
resistance will depend not only on the location, but also on the
displacement of the rail. Because of this, a realization of the
random functiop p(x) will not possess the ergodic property, and
it is not possible to evaluate the statistical properties of the
function from a small number of realizations. (To determine
the statistical characteristics of an ergodic stationary random
function, it is sufficient, in general, to have but one realization.)

If the linear resistance depends on the rail displacement
(i.e. if p(x) is not a stationary ergodic function), the mean
value with respect to x (mean value "along" the process) does
not coincide with the mean value over the ensemble (mean value

"transverse" to the process). In this case the function

M¢ (2,0) =_J ¢(2,0)£[¢(2,0)]de(A,0),

where f[¢(Ai,0)] is the probability density of the random
variable ¢(Ai,0), must be computed by averaging over the ensemble,
i.e. on the basis of methods worked out in the first section

of this chapter.
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Table 23
D T North| x ex|dx cnl ), en [Ad e | Ad x| ¢ = EF j\'
end '
0| 1500] 0,738] 0,226 | 0,010 2,39
1500] 1500] 0,512] 0,186 | 0,040 2,34
R 3000| 1500( 0,326 0,116 1 0,043 2,57
12 (2= | 4500| 1500] 0,180] 0,103 | 0,016 2,75
=514 ) | 6000] 1500] 0,077] 0,057 | 0,040 2,19 j
7500| 1500| 0,020 0,017 | —- - H
9000| — {0,003 — — - ‘
10 Junse '
o -
1959 r. ol 1500| 0.766| 0,241 | 0,043 957
1500| 1500| 0,525| 0,198 | 0,043 2,57
L 3000| 1500| 0,327] 0,155 | 0,016 2,75
12 | 4500] 1500( 0,172 0,109 | 0,046 2,75
(2:=627 &) | 6000| 1500 0,083] 0,063 | 0,043 2,57
7500| 1500 0,020] 0,020 | — -
9000 — |0 — _ —
ol 1500| 0,503} 0,186 | 0,046 2,75
1500| 1500| 0,317| 0,140 | 0,043 2,57
14 s — | 3000| 1500] 0,177} 0,097 | 0,040 2.39
_5‘|4\ ) | 4500| 1500| 0,080 0,057 | 0,040 2,39
= 6000 1500| 0,023| 0,017 | — —
1 Juneg 7500| — | 0,006 — - -
1959 r. o| 1500| 0,515 0,186 | 0,040 2,39
L 1500 15000 0,329) 0,146 | 0,043 2,57
14 3000| 1500| 0,183] 0,103 | 0,043 2,57
(z2==627 &) | 4500( 1500| 0,080 0,060 | 0,043 2,57
6000| 1508( 0,020] 0,017 | — —
7500 — | 0,003 — — -
"ol 1500{ 0,512| 0,186 | 0,040 2,39
1500( 1500| 0,326| 0,146 | 0,046 2,75
13 R (7 -- | 3000 1500| 0,180] 0,100 | 0,040 2,39
— 514 n) | 4800 [ 500| 0,080 0,060 | 0,040 | _ 2,39
= 6000| 1500| 0,020 0,020 | — —
' 7500 — |0 — — —
12 June B
1959 r.
o| 1500/ 0,548] 0,193 { 0,013 2,57
1500 1500] 0,350{ 0,155 | 0,046 2,75
13 L 3000| 1500] 0,195 0,109 | 0,046 2,75
- 897 4500( 1500 0,086 0,063 | 0,013 2,57
(2=627 %) | 6000 1500] 0,023 0,020 — —
7500 — | 0,003 -- — —
T- Temperature at which the rail strings were installed, .
D - date of the experiment
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Table 23

(continued)

| [}
D T li Ngizh x, c% |Ax, cu| b, cM Ad,cu|Av), ex| pe= EF i—}l_
ol 1500] 0,500 0,189 | 0,016 2,75
1500| 1500] 0.320( 0,143 | 0,043 9,57
y R . |3o000] 1500] 0,177} 0,100 | 0,040 2.39
52| as0| 15001 0,077 0.060 | 0,043 2.57
=514 #) | 6000l 1500] 0,017] 0,017 | — —
13 Jund 7500| — |0 — - -
959 r.
1959 r I o} 1s00| 0,518 0,186 | 0,040 2,39
L 15u0| 1500| 0,332 0,146 | 0,043 257
" 3000 1500] 0.186{ 0,103 | 0,043 2.57
(2--627 x) | 4500 1500{ 0,083( 0,060 | 0,040 2.39
6000| 1500] 0.023] 0,020 [ — =
7500| — | 0,003) — — —
ol 1500] 0.332] 0,146 | 0,043 2,57
R 1500] 1500] 0,188] 0,103 | 0,010 2.39
12 . (- | 3000| 1500 0,083( 0,063 | 0,043 2.57
5140 | 4500] 1500| 0,020] 0,020 | — =
60000 — |0 = — —
14 Juneg .
1959 r.
ol 1500] 0,329] 0,149 | 0,046 2,75
I 1500] 1500] 0,180] 0,103 | 0,043 2,57
12 | o7 3000| 1500! 0,077} 0,060 | 0,013 2'75
(z:=627 #) | y1500| 1500| 0,017 0,017 | — =
~|eo0| — |0 = — —
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CHAPTER IV
CONCERNING THE RELAXATION OF THE LONGITUDINAL FORCES

IN CWR TRACK WHEN IT IS DEFORMED IN THE HORIZONTAL PLANE

l. Determination of the relaxation of the longitudinal
forces in the course of analysing track stability by

means of currently available methods

Investigation of the nature of the longitudinal forces in
track which undergoes deformation is of considerable importance
at the present time because the relaxation of the longitudinal
forces is taken into account in one way or another in many currently
used methods for analysing track stability.

At the same timé, the problem of determining the nature of
longitudinal track forces under deformations in the horizontal
plane has not been solved completely, and somewhat arbitrary
assumptions have to be made when the relaxation is taken into
account.

In determining the stability of CWR track by means of the
energy method, the relaxation of the longitudinal forces is

accounted for in the following manner.

(0

L—-s o 2 — e

Fig. IV.l. Longitudinal force diagram (a) due to track .
deformation, (b) under the assumption of constant longitudinal
forces in the deformed track section

2
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Along the deformed length of the track (the shape of which
might resemble the cosine curve, for example) the longitudinal
relaxation forces are assumed to be constant, equal to Go’ and
along adjacent sections they are assumed to decrease linearly,
the slope being equal to the linear resistance to digplacement
of the track. (Fig. IV.l). In connection with this, the linear
resistance is defined as the ratip of the force transmitted from
rail to tie to the distance between the centerlines of adjacent
ties, the resistance of the tie to rail displacement being
assumed constant.

The displacement of the cross-section at the point a, where
the straight and the deformed track sections join, caused by
the variation of the longitudinal force on the straight track
section, is determined according to Hooke's law by

“ 2
Al < »bng Gilx —zf’l"l , (IV.1)
0
where E = modulus of elasticity of rail steel, in kg/cm?;
F = area of rail cross-section, in cm?;
G = relaxation force, in kg;

S = length of the portion of straight track in which
longitudinal displacements take place;

Py = linear resistance to track displacements, in kg/cm.
At the same time, if we assume the middle portion of the

deformed curve to be stationary in the horizontal direction,

the displacement of the point o is the difference between thé

displacements A% and Af'', where A¢ is the displacement

produced by the elongation of the rail string due to its
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deformation (half the difference in the lengths of the deformed
and the undeformed centerlines of the rail string), and az''

is the displacement due to the action of the relaxation force
GO on the deformed track section.

In what follows, the magnitude of the change in the longitudinal
force in the rail string, brought about by the deformation of the
track, will be called the trelaxation force.

Half of the difference between the lengths of the deformed
and the initial centerlines is given by the expression

0
A1=fj;U/TTFE7?—"l)dX~ (IV.2)
Here 2 is the length of half of the deformed wave.

Expanding the square root in a power series yields

—_— , -1, ., 1-1-3
VIR =1+ 50— gg O s 00—

which converges for (y')? < 1.

Substituting this expression into (IV.2) and neglecting

quantitites of degree greater than two results in

0

0
A ::j‘ [] -} _é_(y')a._ 1]4); - _é. s' (y')dx. (Iv.3)

] i

*
If the deformation is described by

y = § (1 + cos 20, (IV.4)

The exact shape of the deformed track has no importance in
theoretical investigations of the question.
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where f is the amplitude of the deformation curve, we obtain

omrr g X w2 f? I

Al_~—§ﬁ—j sin? — dx =~ (Iv.5)
: =l

The displacement, brought about by the appearance of the
longitudinal relaxation force in the deformed part of the track,
is given by

L |
AL Goi.

EF

(IV.6)

Thus, making use of (IV.4), (IV.5) and (IV.6), we arrive at

2
G
o ¢ B0t g2g2, (IV.7)
20 EF EF 161

where Py is the linear resistance of the rail string.

Solving (IV.7) for G, yields

GO:"(‘O"I‘ pﬁ lg-|~ EF{)

nﬂf‘.!

=a Iv.8
0 6T - (Iv.8)

Longitudinal rélaxation forces computed from (IV.8) under
the assumption that they are constant in the deformed section
of the track, may differ considerably from those which actually
exist. In this chapter an attempt is made to solve the problem
of constructing longitudinal force diagrams, and track displacement
diagrams, under the most general assumptions about the nature of
the tie displacement dependence on the applied loads, and about the

character of the track deformation

2. Derivation of the integro-differential equation
for the longitudinal relaxation forces in CWR track
when it is deformed in the horizontal plane
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Let us examine an infinite string of welded rails in a
deformed state, taking the originally straight centerline for
the abcissa.

Under the deformation, an arbitrary point o is displaced:
to a new position. Let this new position be «', corresponding
to a vertical displacement y and a horizontal displacement ).
If the rail string is cut at o', the left hand portion is
discarded, and the right hand portion is straightened out
without changing the longitudinal forces, the point o' will
be displaced to a new position a".

The elongation ¢ of a semi~-infinite rail string is determined
by the action of longitudinal tensile relaxation forces G* and,

according to Hooke's law, is given by

w

*
_ _1 1[G ds,
£ =~ Er x (Iv.9)

where dS is the element of length of the deformed rail string.

.
"

RS

-t ;ir\\<\\~_,;:;71

bt XL e

Fig. IV.2. Displacement of rail cross-section under
transverse deformations of the rail string

Taking into account the relation

*
G (dx/ds) = G,
where G is the horizontal projection of the axial force, equation
(IV.9) can be written in the form

[+ )

__1 s GIl+ (y")2%lax,
£ =" 8F x
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or, neglecting the quantity (y')?, which is small compared to
one, we finally obtain

o]

£ = - l_ S G dx. (Iv.10)
EF x

The difference between the length of the deformed semi-
infinite rail string and its horizontal projection on the interval

(a,=) is given by

-

1= j‘ VT+Gr—Dde = —;;—S(y’)wx. (Iv.11)

X

Clearly, the displécement A of the rail string is the sum
A =f +n,
which, in view of (IV.10) and (IV.l1ll), can be expressed in the form

A=—S'[ ¢ l(y')ﬂ]dx. (Iv.12)

X

Let us assume that the temperature induced longitudinal
forces were constant along the length of the track before it was
deformecd. Under these conditions, the linear resistance to
longitudinal displacements will be determined by the change in the

macnitude of the relaxation forces G on an element of length dx, i.e.

p = dG/dx (IV.13)
On the other hand, it was indicated in Chapter II that in the
absence of vertical loads and previous displacements, the linear
resistance depends on the displacements of the rail cross-section
i.e.
p=¢ (A).
Combining this with (IV.12) and (IV.13), we obtain an
integrc~differential equation for the relaxation forces in a

string of ccntinuously welded rails:
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L I R
dx .‘P[ ‘HEF 2(}’)]‘1"]' (1V.14)

The equation (IV.14) will be solved below for special céses
of functions ¢()) and y(x).

3. 1Integration of the equation for the relaxation forces
in a string of continuous welded rails for the case when
the linear resistance to longitudinal displacement is
determined by dry friction

For this case we assume the existence of dry friction forces
between the rail and the underlying foundation.

In all the previous solutions, it was agreed that the linear
resistance has.the same sign as the increment in the longitudinal
force. Neglect of the actual sign of the linear resistance is
traditional, and all existing formulas whici: relate the longitudinal
force to the linear resistance omit the negative sign; furthermore,
the graphs of the force transmitted from rail to tie are called
linear resistance graphs in the existing literature.

Let us note that if the derivative of the longitudinal force
is related to the force transmitted from rail to tie through the
linear resistance, the twofold neglect of the sign of the linear
resistance does not alter the final result.

In order for an element Ax of a rail string to be displaced
horizontally, it is necessary to apply a force AG in the direction
of the expected displacement. Thus, in the presence of dry
friction, the increment in the longitudinal force has the same
sign as the longitudinal velocity of the rail cross-section.

Since the velocity has the same sign as the displacement, we

can write
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dG _ |p |sign 1, (Iv.15)
dx °

where the signum function is determined by

signd = — 5 -S-l—l;——'- dt [ 0 gor » O, (IV.16)
Yo A—1for *2<L0

The constant linear resistance CIR is determined as the product
of the coefficient of friction between the rail and the rail
supporting foundation (including the friction due to the fastenings)
and the compression force per unit length between the rail and the
foundation.

Substituting for A from (IV.12) into (IV.15), we obtain

: e :
gd—i = o] signj [—— —Egp -+ —;(}")2] dx, (IV.17)

Equation (IV.17) can be obtained directly from (IV.14) by

setting
¢$(r) = |p°| sign A .

If the CWR track has the same elasticity in the longitudinal
and transverse directions, the deformation which results when the
track undergoes buckling in the horizontal plane is either symmetric
or antisymmetric. Under these conditions, the longitudinal relaxa-
tion force diagram will always be symmetric, while the displaement
diagram, obtained by integration of a symmetric one, will be anti-
symmetric. It follows from this, in particular, that A (0) = O
(the coordinate origin is at the center of symmetry).

The physical significance of this is that the midpoint is
stationary. Consequently, investigation of a semi-infinite

rail string is sufficient for computational purposes.
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It follows from (IV.15) and (IV.16) that the function
P, = dG/dx has jump discontinuities at those points where X(x)
changes sign. Thus, the longitudinal force diagram, being
obtained by integrating the linear resistance p(x), will have
corners at these points.

If A(x) changes sign only at the origin, the longitudinal
force diagram will have a corner only for x = 0.

The longitudinal force in the right half of the rail string

can be represented in the form

[Ieel@ x) for x-2

G () 0 for Xz,

(Iv.18)

The longitudinal force and longitudinal displacement diagrams
for the case examined above are shown in Figure IV.3.

3

Fig. IV.3. Diagram of longitudinal forces due to track
deformations when the rail-foundation interaction is
frictional, and when A(x) has one change of sign

When the function X (x) has two changes of sign, at x = 0
and at x = b, the longitudinal relaxation force diagram will

have two corners.
The longitudinal force in the right half of the rail string

can be represented analytically in the form
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bpol(z—2b-|-x) for x<(b
G(x)=1{[pel(z—x) for 0 <<x <Lz (Iv.19)
0 for ¥>7 |
The longitudinal force and displacement diagrams for this

case are shown in Figure IV.4.

?

Fig. IV.4 Diagram of longitudinal forces due to track
deformations when the rail-foundation interaction is
frictional, and when A{(x) has three changes of sign
The solution to (IV.1l7) can be found by a method of '
selection applied in the following way.
Let us suppose that the function 3 (x) has n changes of sign
in the semi-infinite rail string, at x = 0, and at x = b,
(i=1, 2, ..., n-1). Then, it follows from (IV.12) that we will

have n equations:

N

l_

].

Gydx -- 5 (y ) dx,

!

:F

, (IV.20)

F

G(x)dy - L

2

Sy ©

(") dx.

3y

__GL/->8 o(_,—)8

Here G(x) is determined by the formula for the case when the
longitudinal force diagram has n corners, similar to (IV.19) for

the case of three corners in =-e<x<w,
Having determined z and bi (i=1, 2, ...,n-1) from (IV.20),
we can construct the longitudinal force diagram. Let us note

that for the right half (left half) of the rail string bklo

(bkgO). If this condition is not satisfied, the number of
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changes of sign of A(x) must be different from n.

Knowing the longitudinal force
from (Iv.12). 1If the function
bi for its roots, the function
otherwise it becomes necessary
function A(x) has m changes of

(i =

Examgle 1.

diagram, one can determine A (x)
A (x) so obtained has the values
G(x) must satisfy (IV.17),

to recompute,

assuming that the

and at x = b,

sign, at x = i

0,

1, 2, ...,m-1). Let us study two examples.

Let us construct the longitudinal force diagram

when the deformation is given by

2

with £ = 11.3 cm, 2 = 800 cm,

F =

_ £ (1 + cos

mX
),

, = 10 kg/cm, E = 21-10° kg/cm?,

128 cm? (cross-sectional area of two P50 rails). The

deformation curve is shown in Figure IV.5.

e

21

Fig. IV.5.

Deformation of the rail line

Let us assume that the function A(x) changes sign twice

in half of the rail string.

the form shown in Figure 1IV.6.

The longitudinal force diagram has

Fig. 1IV.6.

e 2 e

Areas in the longitudinal force diagram, which

determine the longitudinal deformations of the rails
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Making use

of (IV.20), we form the two eqguations

2 L-’- l
Sa(ﬂdx“’{§XWPdm

0

2 {
SG(x)dx 5 .j(y) dx

;

The integral on the left hand side of the first equation

is equal to the

Let us now compute the integral on the right hand side of

area abcd (see Fig. IV.6). Thus,

\ Po2? 2__'1062
S' G (x) dx = -—,z-—-pob’:: 522 —'106%.
0

the first equation:

The integral on the left hand side of the second equation

is equal to the

Let us compute the integral on the right hand side of the

! , f ,
EF , aof? ax a1
Tj(}’ y'dx = EF 57 Ysm’—r dx = EF 17 =
b 3
2,1-10%-128x2. 11,32
= 16-800

= 2,65-107,

area ecd. Consequently,

s ..
— ) :
ga(x)dxzpo 2 0] ) = 522 — 1020 -+ 5b3%.

second equation:

{ { -
EF 2
T§(y')'dx-::EF fgﬁ— ;[ sin? 5 dx -

g \ o tagstiTy ) 2

wofpl—b 1 2ab\  2,1-10°128a2-11,3% /800 b
8l ( - 8-8007 (‘—“‘

+ %sm %’_b) = 2,65-107 — 3,3-101 b -|- 4,2-10° 5in 7,85 10-7b.

This yields two

{

equations

527 — 10 b2 — 2,65- 107 == U;
522 4- 5b% — 2,65-107 .| 3,3- 10V 0 — 4,2.10%5in7,8- 1073 ) — 0z0 = Q.
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T

Solving these, we obtain

]

z 2300 cm
b = 300 cm.
Having the values of z and b, we can construct the longitudinal

force diagram (Fig. IV.7).

' mm .l‘ L

RS 1 Y SR Y

Fig. IV.7. Longitudinal force diagram for the first example

Except for the multiplying constant (1/EF), the displacement
of the track cross-section produced by the appearance of the force
G(x) is, according to (IV.10), egual to the area under the

longitudinal force diagram to the right of point x (Fix. IV.8).

Fig. IV.8. Area in the longitudinal force diagram which
determines the longitudinal deformation at the point x

The difference between the lengths: of the deformed rail
string on 0<x<% and its horizontal projection can be found

from (IV.11l):

!
, e nx i sl x { 2nx
b )’dxz'a_ﬁ-j‘s'"z'f de =g | 75l gy sin-y
X

n’-ll,:i"(BOQrm_.\i 800 | 2ux) ]

*r‘=

=gsoor |27 1 an M ew
= 0,098 — 1,22.10~4 x | 0,01565in7,8-1077 x,
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The n diagram is shown in Figure IV.9.

€

I]’A,CH

~

~
) o3
AN,
8 SIS
< S| S T
=N ‘12 < _ b A P
W» S ]
=
3
S

Fig. IV.9. Longitudinal displacement diagram for Example 1

The difference between the £ and the n curves, shown
shaded in Figqure 1V.9, represeﬁts the longitudinal displacements
of the track cross-sections. The resulting A(x) curve has
zeros only at 0 and at 300. Consequantly, the assumption of
two sign changes in A(x) is correct.

It is evident from Figure IV.9 that the displacements caused
by the relaxation of the forces are directed away from the center
of the deformed curve in the section |x| < 300 cm, and towards
the center in [x| > 300 cm.

Example 2. Let us construct the longitudinal force diagram in
the deformed track on the basis of equation (IV.4), éssuming
f=3cm &=800cm p =20 kg/cm, E = 2.10% kg/cm?, F = 128 cm?
(cross-sectional area of two rails).

The deformation curve is shown in Figure IV.5. Let us
assume that the function A(x) changes sign only once, A(0) = 0.

From (IV.20) it follows that

z EF &
J G(x) dx = 2 [ (y')2dx,
o] (o]

The integral on the right hand side is equal to half the

area of the triangle in Figure IV.3. Consequently,
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, .
22 2022

Ya(x)dxz"—;—=-2—~lo 2

0

Let us compute the integral on the right hand side:

l -

Lo " _l‘ =——dx er Ml

S EF | (/)P dx = EF J | sin I [T
0

3, 2,38
_ 2,1.10¢.128 n®.3 — 1,85.10°.

= 16-800
We obtain the following equation:
10 z2 = 1.85.10°,
Thus, the abscissa of the end point of the longitudinal force
diagram is given by
z = V18.5-102 = 430 cm.

Having obtained the value of z, we construct the longitudinal

force diagram (Fig. IV.10).

e by et 3, 7 1 1=

Fig .IV.10. Longitudinal force diagram for Example 2.
The dotted curve shows the force computed according
to the presently used method
Except for a multiplying constant, the displacement of the
track cross-section at x, produced by the appearance of a longitudinal

force according to (IV.10), is equal to the area under the longi-

tudinal force diagram to the right of point x.

The difference between the length of the deformed rail
string on (x,») and its horizontal projection can be found from

(Iv.11) :
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n? {—x ! | 2nx
n_j (y )zdx - —I(—Z— - g Sin g )_—;
322 800 — «x 800 2x
= s-sooi(“"ff—" TS o)
= 6,88-10~3—8,60-10"% x - 1,09-1073 5in 7,8-10" % x.

Figure IV.1ll shows the ¢ and n curves, and their difference 1.

8,0, 4,01 197"

= 2

b 4 T, M

NENE |

2 3 ’
3,7 4,3 43 N

td ’

Fig. IV.1l. Longitudinal displacement diagram for Example 2

It is clear from Figure IV.1ll that the only zero of the
function A (x) is the one at zero. Consequently, our assumption
that A(x) changes sign only once is correct.

For comparison, let us compute the longitudinal relaxation
force by means of the presently employed method. According to
formula (IV.8)

Gomm ol 1Y B4 L0 B,’

= —2o-eoo+]/202-8002-;-2,1-loe- '28'208'7800 - 2200kg.

Figure IV.1l0 shows the results obtained from the presently
used method and the method proposed here.

The solutions of each problem is unique. The hypothesis
n = 1 will lead to a contradiction in the first example, since
the number of roots is two. In example two, an attempt to
assume two sign changes will lead to a contradiction, since the

roots of A(x) in the right half of the rail string will turn
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out to be negative.

4. Integration of the relaxation force equation for
CWR track for the case when the linear resistance to
longitudinal displacement is a linear function of the
displacement

Frequently, the function ¢(A) can be represented as a linear
function of the displacement,

o (r) = k..

1
In this case (IV.14), after differentiation, takes the form

Gk
< _EF

G=—"5yy. (Iv.21)
It is not difficult to solve (IV.21) for an arbitrary function
y'(x). In chapter VI it will be shown that the eigengunctions of
the stability problem for CWR track can be expressed in terms

of hyperbolic and trigonometric functions. When the buckled
surface is symmetrical, the slope y' of the deformed rail string
can be represented in the form

-aX

y' = Ae singx. (IvV.22)

In this case one should look for a particular solution of

(IV.21) in the form

-2aXx 2a

-2 . -
G = Ble sin?gx + Bre Olxs:.nZBX + B3e xcosZBx.

Substituting this expression in (IV.21) and equating the
coefficients of like functions on both sides of the equation, one

can determine the constant Bi:
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By=sA__F1

T — o) = Aos L

2ap & ’ S

=4 4nz_Bl_”llz = Aoy, , g S

| 3325@%’”&;:/1%3' s

where n = 4a8, m = 482 - 402 + y2, and y= Vk17EF .

It should be noted that the constants Wy depend only on the f
track parameters and not on the shape of the deformation.
The general solution of (IV.21) with y' specified by (IV.22) ]

can be written in the form

G=B,e~1%4-B;e1*--B, =" sin® Px-|- B, e72%* sin 2Px - By e72** cos 2px. (iv.23)

Making use of the condition G(=) = 0, we get Bg = 0.

Now let us determine A(x). Substituting (IV.22) and (IV.23)

into (IV.12), we obtain

ao
' B, A - Py o
Az(Eﬁ—mf)jeJ”mfﬁnu |£— “Ervsin 2By dx -

NL_—-§8

(Iv.24)
B [+ 4]
-+ —F".j‘ e—2x cos 2Bx dx |- i‘—j‘ e~ dx,
0 x
The condition A(9) = 0 can be used to evaluate B4:
. c
(A l-f—B,) je S gin?fadx - - By ) e Yrrsin2pa Iy
{
B‘ o 0 = ) R

§ e~ dx

X
Baé e=22% cos 2Bx dx

J e dx

or, after performing the integration,
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' :EF 2
By = A%, = 2(a2ﬁ+ ¥3) [(A £ —Bl)l‘ — 2'\"‘831] R

where W, is a constant which depends only on the track parameters.
Substituting the values of the coefficients B, into (IVv.23),

we obtain the expression for the relaxation forces in CWR track:

G = A? (0,e1% + 0.~ sin® Bx + w,e~2 sin 2Bx - wze=FFcos 2px).  (IV.25)

It follows from (IV.25) that for small track deformations
the longitudinal relaxation force is a quantity of second order
with respect to the maximum value of the slope of the deformation

curve.

Fig. IV.12. (a) Force and (b) displacement diagrams for
the example used to illustrate the case of elastic '
rail-foundation interaction

Figure IV.1l2 shows the longitudinal force and displace-

ment diagrams resulting from the action of a concentrated force

6

k kg/cm?, F = 64 cm?,

48 kg/cm?, E = 2.1°10

6 =0.0lcem Y, y=6.10%cemt, A= 0.05.

[
In conclusion, we note that the presently employed formulas

for the determining the relaxation forces, according to which
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the longitudinal forces in the deformed section are constant,

can give results which differ from the actual results not only
guantitatively, but qualitatively. This was particularly evident
in example two. The proposed method allows one to determine the

track forces and displacements more accurately.
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CHAPTER V
CONCERNING LONGITUDINAL FORCES IN CWR
TRACK IN THE ZONE OF THE MOVING TRAIN

In studying rail creep produced by forces which arise in
CWR track, it is important to take into account a special
property which influences the creep forces, as well as the
displacements induced by these forces. This special property
is the continuity of the longitudinal rail deformations in
CWR track.

For conventional jointed track, the theory of rail
creep was developed by V. G. Al'brecht [1].

An attempt is made below to understand the character of
the longitudinal forces in CWR track in the zone of the moving
train, under the most general assumptions concerning the
nature of the resistance of the ties to displacement along
the track, and of the form of the rail deformation due to
vertical forces.

l. Derivation of the equation for the longitudinal

displacements of CWR track in the zone of the moving train

We will assume that a string of welded rails can be
treated as an infinite beam in bending under the action of
vertical forces. Let us examine it in a coordinate system
X Yy moﬁing with the train with speed v cm/sec. Let us take
the undeformed rail axis for the abscissa (Fig. V.l).

Due to the motion of the train, a point @« on the neutral
axié is displaced to position a'. If the part of the rail string

to the right of o' were straightened out while maintaining the
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axial forces, the point o' will be displaced to a"

Fig. V.1l. Displacement of the rail base under the
action of longitudinal and transverse loads

Clearly, the displacement ¢ produced by the longitudinal

forces can be obtained from Hooke's law:

1.(1)
:T‘E—Fj‘dea (V. l)

v

where P is the axial force in the track (tension).

The difference between the length of a curve and its
horizontal projection is given by (IV.1l1l). Finally, the
displacement of the rail base x, due to a rotation of the

cross-section through an angle y', can be found from

x = by', o (v.2)
where b is the distance between the rail neutral axis and the
rail base.

In the first approximation this distance can be taken
to be half the rail height. Consequently, the displacement
of the rail base is given by

A=+ n+ x.
Substituting for the quantities on the right hand side

from (v.1l), (IV.1ll), and (V.2) yields

T p |
- _~5 s Aot g

kt__—>8

(y'Vde 4-by’'. (v.3)
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In the solution of problems connected with rail creep, we
will take the tensile forces to be positive. Let us now move
on to the examination of the forces transmitted to the rail.

The longitudinal force increment AP in a section of length
Ax is given by the sum of the force AG, which acts at the rail-
tie interface, the tensile force AR of the anticreep system over
the length Ax, and also the inertia force AI, acting at the
center of gravity of the element Ax, minus the incremental creep
force AT, produced by the train deceleration and transmitted
to the rail head.

The force AG is a function of the vertical and the horizontal
displacementé of the rail cross-sections, and of their derivatives.
-Since the time derivative of the quantity A is, to within a
multiplying constant v, equal to the derivative of 1A' with respect
to the abscissa x of the moving coordinate system, we can write

AG = AG(AIA'IA“I"'IYIY'Iy"I"°)I (V-4)

or, taking into account (V.3),

AP = AG(E,E',E", e, Y ¥Y'sY"s..) = AT + AR + AI.

Dividing this equation by Ax, we obtain

%% = ¢(g,E", 6", ...,y ¥y sy — 1+ 1+ 1, (V.5)
where
AT AG 1 1)}
H':T; H=¢(CIE'I€'I“‘IYIY'IY I"');
AR _ ., A1 _
AX ~ ' Ax T 7T

In view of the fact that the track is divided into intervals
of equal length Ax, which is considerably smaller than the length
of the train, the ratio of the increments can be approximated

by the derivative. Thus,
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dp = g = (bl(EIE.-IIEJ"I"‘IYIY'Y"I‘“) -t +r+ i. (V'G)

dx Ax

Let us determine the inertial forces i per unit lengtH,
which arise due to track displacement in the direction of creep.
When the track is subjected to a longitudinal force P and a
vertical load, the cross-section at x is displaced by the amount

£ + n, so that the inertial force I is determined by the following

expression:

d?(g + n)

AL = mAX——'_dE—Z—,

=

where m is the mass per unit length of track in kg sec?/cm?.

Since t = x/v, where v is the train speed, we obtain

.1 2 d2 (¢ + n)
1l = 7 mv —'——Q——dx (V. 7)

Differentiating (V.i) and IV.1ll) twice, and substituting the

results in (V.7), we finally obtain
.1 2( l . dp oo
PEZWRNEF Y
When the deformations are small, the quantity dZn/dx? = y'y"Y is

small to second order and can be neglected, so that

mvZ , dp (V.8)

1l = —=—

2EF dx -

Substituting (v.8) into (V.6), we obtain

ax = %, [¢l(§,g',E“,...,y,y',y",...) -1 + r].

Here

___2EF
@ = 2EF - mvZ °

Q

For speeds less than 200 km/hr, the coefficient a is, for

all practical purposes, equal to one, so that we can write
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8)

dp 1 n ' n
-— * ’ ’ [N A ] ’ [ I - + D
o ° t1(E.et e Yey'sy ) —T+r

Differentiating (V.1l) twice, and substituting (V.9) in the right

hand side, yields

d2£ 1 1 " 1N _ T - r. (v.10)
axz = EF ¢1(€I€ tE e Y'Y'Y goee) EF

The solution of (V.10) can be considerably simplified by
means of a method which will now be described.

Suppose, for example, that the train consists of identical
cars of length éx. Then, the longitudinal force increment in a
section of rail of length d8x will be given, according to (V.9),
by the expression

§x

§P = é b1(E, 8", 8", oo, y,y' Yy e )dx - 6T + réx, (v.11)

where 8T = 18x is the force on the rail head produced by the
friction in the journal boxes and brake shoes of one car.

In contrast to the rapidly oscillating functions y, y', y",
«.., the functiomsg,g',t",... vary slowly, so that their values
can be considered constant on an interval of length éx.

Thus, the integral in (V.1ll) becomes a function of the parameters
£,£',6",... . Dividing (V.1ll) by éx, we obtain

ix

1
g—g QB e 1YY )l — ety (V.12)

6T

=7q’1(§.§:§._—-- _sz'l'r'

°’Iwa

Since the length of the train is considerably greater than the

length of a single car, we can set

- _ 1 " -
A  ix S sx VilEsETEY,..) - T+ (V.13)
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Here
E = ﬂ *
AX 66X

Now, making use of (V.1l) and (V.13), we obtain

T =

d2§ _‘ 1 - ‘ ' opn ___.T_T_{‘ |
R (v.14)

We will call equation (V.14) the longitudinal displacement
equation for CWR track in the zone of the moving train. It is
very much simpler than equation (V.10) since it does not contain

the functions y, y', v",... .

2. Integration of the longitudinal displacement equation
for CWR track in the zone of the moving train when the
interaction between the rail and the rail supporting

foundation is purely frictional.

For the case when the force between the rail and the rail
supporting foundation is that of dry friction, the function 2
has the form

b (& E B sy oyt oy sees) = - keg sign b . (V.15)
Here kf is the coefficient of friction between the rail and the
foundation, including the friction in the intermediate fasteners;
g is the distributed vertical load due to the train; and dia/dt is
the time derivative of the rail base displacement. The function

sign A is defined by

© 1 nm1?)>0
signi=— | 20 g} 0mpud-o.
T e -— 1 npu A<Z0

The formula (V.1l5) states that the frictional force which
arises at the interface between the rail base and the foundation
is proportional to the vertical load, and that its direction

depends on the direction of the displacement of the rail base.
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- The minus sign shows that its direction is opposite to that of
the rail base displacement.
- Let us compute the derivative di/dt. Since dx/dt = v, we

obtain

N dx P 1
A = v-d§= v(ﬁ_- _2__(yl)2 + by"),

from (V.3); or, neglecting the second order quantity (y')?,

and approximating b by means of h/2, where h is the rail height,

we are led to

Let us make some transformations:

o P n o, (P h M
sign A - sign U(L:i_‘-l» By ) == sign (—"Fﬁ -—2—-—5.-14)
= sign (%;‘ P—M ) = sign (—2,%‘2’[)»_44) ,

where io = radius of gyration of the rail for bending in the
vertical plane;

M = rail bending moment;

I = moment of inertia of the rail for bending in the

vertical plane.
The ratio io/h is approximately the same for all rails, io/h= 0.37.
Thus, we obtain A
sign A = - sign (M - 0.27 hp). (V.17)

Let us construct the function y:

x

P, & E,..):= -%f— S‘ g (x)sign(M — 0,27 hP) dx. (v.18)

.
0

For a particular car, the function ¢ can be computed for

various valucs for the force I.
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The general technique for computing the integral in (V.18)
is illustrated in Figure V.2.

Having determined the values of ¢1(€,€',€",---) = ¢2(P)
for different values of the longitudinal force P, one can construct
the graph of wZ(P). The general form of such a graph is shown
in Figure V.3.

For our case, the differential equation (V.9) for the longi-
tudinal forces has the form

%1}3{ = 4,(P) - 1 +r, (V.19)

and can be integrated by quadratures:

dp
yo(P) - 1 + x

X =7 + c, (v.20)

where the constant c is determined by the boundary conditions.

<
/
/
/
A~}
g . =]
R

D SRR Y

Fig. V.3. Graph of creep Fig. V.4 Graphs of longi-

force due to one car vs. tudinal forces (a) and displace-
the mean va}ue over its length ments (b) in the moving train
of the longitudinal force zone, with frictional inter-

action Letween the rail and
the rail supporting foundation
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Fig. V.2 Construction of graphs of longitudinal
forces and displacements in the zone of one

moving car, assuming frictional interaction between
the rail and the rail supporting foundation
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If we adopt the approximation

¥, (P) = d - bP,

L, TN

then the equation (V.19) for the longitudinal forces takes the form

A AR Py R

dp _
E)-{- + bP = qa T + r. (V.Zl)
The solution is given by :
o - 1T+ }
p = Be P¥ 4 - ’ (V.22)

where the coefficient B is determined by the boundary conditions.

Let us construct the graphs of longitudinal forces and

N e s s e RO P e

displacements in the track. The general form of such graphs is

shown in Figure V.4. The figure shows that for x < o the rails

ot e T

are displaced by an amount Ec’ which represents the rail creep. :
Assuming values for P2, one can construct the graph of P(x).

Indeed, in the section Xy X <Xq in front of the moving train,

the longitudinal forces are given by

P =-g, kelxz - x) (V.23)
= po(x - X 3),

where = is the force per meter of length which presses the rail
to the foundations in the absence of loading due to the train.
The length of the section in front of the train in which the long-

itudinal forces are damped out is determined by the formula

L, = x, - X, = P2 . (V.24)
p

o]

In the section X < X <X, underneath the moving train, the

longitudinal forces can be found from the expression

o — 1T+ r
e blxy=x) = 7 (V.25)

P=23B 5
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The value of B is found by making use of the condition

P2 = B + b-l(a - 1T + r),
which yields
B=P,-bl(a-r1+r).

In the cross-section x = Xy the longitudinal force is given by

Pi= P(x) = (P S5 oremn g ST

In the section 0 < x <x; behind the moving train, the longi-
tudinal forces can be computed from
P = P1 - po(xl - x). | (v.26)
The length of the zone behind the train in which the longitudinal

forces are damped out is determined by

L =X 4 =

;l (v.27)

o]

Every value of P2 determines a longitudinal force graph.

To find out which graph is the correct one, i.e. to resolve the
static indeterminacy of the system, let us make use of the
principle of least work, which states that the partial derivative
of the system potential energy U with respect to the redundant
unknown quantity P2 must vanish, i.e.

oU
aP,

The potential energy of the longitudinally deformed CWR track

= 0. (v.28)

is given by [17]

oo

= 1L 2
U = 7E—F' f P-dx. (v.29)

-
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Let us split the integral in (V.29) into a sum of three

¥
z
i
i
¥

integrals:

T Pdx = Y Pidx |- jl Prdy - ]: Pdx.
—~00 0 Xy

i e e e

Let us compute the first integral on the right hand side: %
j
Py 1) e b4) :
2 b ;
%thfmw: 5 mxmwamx i
0 :
X [Pye= b4y (1 —et)p,
t
where y = b (o - 1T 4+ 1), 2 = Xy = ¥p. %
Evaluation of the second integral yields i
Xy 1 1
2EFU, = | Prdx = { [(P,—v)e % |- y]?di=
! o ° I} ! ;
= [ (Pa—yr ety 4 [20Pa—vye a1 fyras
i
1 ) I .
= (Pa= V) gy (I —em 2 b 2y (Py— ) 3 [ - e ] 2L i
i
3
Finally, the third integral is equal to }
9 ¥
2EFU, =j P2dx - S po x2dy - —,—l— P B
. ‘390 E
Xy 0 H
‘ 3
Differentiating these expressions with respect to P,, !
1
agEFUI 1 ~ bl 1) ~ bl AR i
—_—t T0T e ) 'y - Y 1 -— » 5
ob, o € [ 2 i \( )l

O2EFUy 1 v sy by 10y (1 ety

B T U U .
RUFC 1
()l)g Pn o i
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and making use of (V.28) results in
2P0y (=0 P p—yy L oy
Po Po b

-+w%4b—mzq

where 8 = e P%. This equation has the form
Pg +CPy, + D=0,
where
20ty (1 —0)- B (1 - 09
C-- o
(v.30)
ov2( —0p-- Y 1 —09-28¥ 0 — o)
= TFETTT T

If the length of the train is large, 6 = 0, which leads to

the approximations:

The solution of (V.30)

fe— Sy ET 0

determines the actual value of lethe negative sign in front
of the square root corresponds to the maximum of U(Pz)].
After the construction of the longitudinal force graph, let
us determine the longitudinal displacement of the neutral axis
of the rail. With our choice of the coordinate system (see Fig.4),

the displacement ¢ can be found from the expression
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where g(x3) = 0. It should be noted that the graphs shown in

Figure V.4 describe only the smoothed out variation of the longi-

tudinal force and displacement along the length of the rail string,

However, one can construct such graphs taking into account the
variation of the load (per unit length) on the rail base over a
distance equal to a car length.

In order to accomplish this, it is sufficient to subdivide
the longitudinal force graph into sections of length $§x, and on
each of these to replace the smoothed out curve by the actual one,.
The following procedure can be used. The increment 5P, in the
longitudinal force is measured in each section, and the graph V.3
is used to find the averége value of the longitudinal forc;'on
the interval Pi by means of the expression w2(Pi) = 6Pi/6x. Now,
using the procedures shown in Figure V.2, one can construct the
graph of the actual longitudinal forces on the i-th section.
Having performed this operation on every section, we will obtain
a more accurate graph of the longitudinal forces in the zone of
the moving train, and, after integrating it, a more accurate
graph of the longitudinal displacements. Now there is no diffi-
culty in constructing the graph of the longitudinal displacements
of the rail base. To do this it is only necessary to add the
graph of displacements ¢ of the neutral axis to the graph of the
angle through which the rail is rotated multiplied by the constant

h/2.

* Here the average is, in general, not the average value over an
interval with unit weight, although it must satisfy the inequality
AiiPiiBi’ where Ai and Bi are respectively the smallest and the

largest value of the force on the i-th section.
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Example. Let us construct the graphs of the longitudinal force
and displacement in the zone of the moving train. Let us suppose
the train consists of 80 two-axle cars, each of length 16 m, with
8 m between axles. Assume the following data:
Load per axle, P_ = 10 T; k = (U/4ED) /% = 0.01 em™!; ¥, = 0.25;
h =152 mm; r =0; 1 = 0; po=0.6T/m.

In this example it is convenient to take éx to be the distance
between adjacent axles, and 6P to be the creep force due to one

axle. The functions M(x) and g(x) are plotted in Figure V.5. 1In

view of their symmetry, only the values for positive x are shown.

]
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Fig. V.5. Calculation of the creep force due to one
wheel for different values of the longitudinal force
in the rail, assuming frictional interaction between

the rail and the rail supporting foundation (corresponding
to the first example).

On the graph of M(x), let us draw a sequence of horizontal
lines with ordinates equal to 0.27 hPi, for Pi = 5, 10, 15, and
20 T. The abscissas of the points of intersection between the

graph of M(x) and the straight lines, determine the sign of the

17




frictional force per unit length between the rail and the

foundation.

Let w, denote the area bounded by the curve g(x), the horizontal

1
axis, the vertical axis, and a vertical line with the same abscissa
as the point of intersection between M(x) and the horizontal line
corresponding to P, = 20 T. Let w; denote the area bounded by
g(x), the horizontal axis, and the two vertical lines corresponding
to P, = 20T and 15 T, etc. (see Fig. V.5). It is found that wy =

= 0.31 T;

2.11 T; w, = 0.33 T; = 0.25 T; wg = 0.43 T; v, = 1.86 1

w3 “q 5

Consequently, the creep forces produced by one axle, for

various values of the force Pi’ will be given by

8P, (0) == 2eyp (@) |- wg -+ wg - wg |- wg — o) - 2-0,25 (2,11 -}- 0,33 -
40,31 -[-0,25 -[- 0,43 — 1,86) = 0,79 T;
8P (B) == 2kyp (v -} w1g -|- 0y -f- g — wg - wg) - 2:0,25(2,11 -{- 0,33

40,31 -1-0,25-— 0,43 1,86) -: 0,35 T;
3P, (10) == 2kyp (v ~}- 0rg |- oy — g — g — wg) - 2-0,25(2,11 -{ 0,33 -
+0,31 —0,25--0,43-—1,86) -- 0,11 T,
3P (15) = 2kepp (g - wg — w5 — wg — o1p — vg) -+ 2:0,25 (2,11 -{- 0,33 —
—0,31 -0,25—0,43-— 1,86) = -~ 0,21 T;
8P (20) == 2kpp {0y — wp — Wy wg == wy — o) = 2:0,25 (2,11 —- 0,33 —
—0,31—0,25—0,43-—1,86) == — 0,56 T.

Figure V.6 shows that the graph of GPi(Pi) is very close to
that of a straight line. Let us approximate it by the straight
line

§p.(P.) = 0.78 - 0.065 pP., T.
iti 1

Taking into account that éx = 8 m for our case, we obtain the

expression for the function wz(Pi)

P,

vo(P.) _ i _ -
A L 0.095 0.0081 P,, T/m.
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86 T,

1

Thus, we will have two additional parameters: a = 0.095 T'm — and

b - 0.0081 m T.

PY R
0'6‘ ., S S (RS SN
\
04 S\
02 . }_\ PO DR, — e —
: N
0 5 w\\\\g 201
N ¢
-02 X
-04 —
.ub‘

Fig. V.6. The graph of the creep force due to one pair
of wheels as a function of the longitudinal force in the
rail, assuming frictional interaction between the rail
and the foundation (for the first example).
Let us determine the parameters C and D in equation (V.30) from
the approximate expressions previously introduced:

8 = exp(-0.008 x 80 x 16) = 0 ;

C=op_ /b=0.6/0.0081l=74T;y-= b Y(a-t+r) = 0.095/0.0081 = 11.7 T;

D = Tpo/b = 11.7 x 0.6/0.0081 - 865 T? .

Let us compute Pz:

p, = - = ¢+ [(c/2)2-p] Y2= - 14,57
The quantity Pl can now be determined from
P, = (P, - e 4y =y =117

The length of the zone in front of the train in which the longitudinal
forces decay can be computed from (V.24):

by = P,/p, = 14.5/0.6 = 24 m.

The length of the zone behind the train in which the longitudinal

forces decay is determined from (Vv.27):
Ly = Pl/po = 11.7/0.6 = 19.5 m.
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Now we have all the necessary data to construct the longi-
tudinal force diagram. Dividing the graph of the longitudinal
forces into subintervals (Figure V.7), and constructing on each of
these & new graph by taking into account the creep forces along
the length of a car, we will obtain a more accurate graph of the
longitudinal forces. 1In view of the complexity of the computations
required, we indicate the high frequency oscillations produced by
the forces which vary along the length of a car, superimposed on
the averaged graph, in a qualitative way only in Figure V.7.

The graph of the longitudinal displacements is also shown in

Figure V.7. Here the amplitude of the oscillations about the

averaged curve is much smaller.

s i Ty

= LI ST T T P TS
|A\A

IHMHH Hx;“MM J

i 400 son o] rédozn

iy e

Fig. V.7. Graphs of the longitudinal forces (a) and
displacements (b) in the zone of the moving train, with
frictional interaction between the rail and the rail
supporting foundation (for the first example).

In conclusion, let us note that we have investigated forces
only in infinite rail strings without joints. In the presence of
joints between separate strings of rails, the boundary conditions

which determine the graphs of the longitudinal forces and displace-

ments will be different from the ones we have used.
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3. Integration of the longitudinal displacement
equation for CWR track in the moving train zone
with elastic interaction between the rail and the

rail supporting foundation

If a spring type intermediate fastener is strong enough to
prevent the relative displacement of the rail and the tie, the
results of V. G. Al'brecht [l], on the determination of the modulus
of elasticity of the rail foundation in the horizontal plane, show

that the function ¢ can be represented in the form

¢l(£,£',£",...,y,y',y",...) = - (n+mg) 1, (v.31)

where n and m are constants, and g is the distributed vertical

load. According to Al'brecht's data for'medium grained sand
ballast, n = 48 kg/cm?, m = 4.56 cm. The minus sign in (V.31)
indicates that the elastic reaction of the foundation at the
rail-foundation interface opposes the displacement of the rail, i.e.
that the reaction force acts in the direction opposite to the creep.

Let us compute the function wl:

) ) tx
P BB D = e @ B E L Yy ) de
0
dx

-IS (rn-]-mg)E-1-n | x)dn.

Neglecting the quantity n, which is small to second order
compared to the displacements ¢ and x, we obtain
bx tx
Wt )=t | (mg e § g1 me dx.
0 0

The second integral on the right hand side is equal to zero

since the integrand is a product of functions orthogonal on the
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interval 0<x<é8x (the function n+mg is symmetric, while x is

inverse skew-symmetric on the interval). Thus,
"pl(Elg'lg"l"') = - £(néx + le) = - Clgl (v.32)

where Ql is the weight of the car, and < is a constant.
Substituting the expression (V.32) into (V.14), and taking

into account the absence of anticreep devices (r = 0), we obtain

4 T Y
d TRy ¢ T TR (v.33)

This equation has solutions of the form

¢ = Ayjshy x + Ajchy,x + f:—T, (V.34)

1

where §T = 16x kg, and Y1 = /cl7EF5x cm_l.

Differentiating (V.34) and making use of (V.1l) yields

P = (Alylchylx + Azylsh le)EF. (V.35)

Now, let us address ourselves to the problem of determining

the constants A, and A,.

1 2
Let the origin of the coordinate system be at the mid-point

of the train, which has length 2% (Fig. V.8).

P

Direction| of motion

Fig. V.8. Diagram of longitudinal track forces in
front of the moving train, with elastic-frictional
interaction between the rail and the supporting
foundation.
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In the interval 2 < x<«, in front of the moving train, the
conditions g = 0, 1 = 0 must hold. Then, according to (V.33) and

(V.32), we obtain

d=E Cs B
G Frexs U (V.36)

i

Here z = x - 2 and c néx. Solutions of (V.36) have the form

2
§ =z Dl e—T!z + D2 ehz' (V. 37)
where Yy = Yn/EF . From the condition {(w) = 0, it follows
that D2 = 0, and we obtain
£ = Dy exp(—yzz). (v.38)

Differentiating this expression and making use of (V.l), we obtain

P=EF§-§- oy EFDye ©% - =y, EFE. (V.39)
In particular, for x = ¢ ,
P(2) = —yzEFE(z). (V.40)

If the elasticity of the track is uniform, we can write

P(-2) =

yzEF &(—g). (v.41)

The minus sign in (V.40) indicates that the forces at x = %
are compressive.
Substituting (V.40) and (V.4l) into (V.34) and (V.35) when

X = 2 and X = -2, we obtain two equations:

- Alyl chyll - Azyl shyll = Alyz shyll + AZYZ chyll + y2<ST/c1

- Alyl chyll + A2 Y shyll = Alyz Shyll - A2 Yo chyll - yzéT/cl.

Solving these, we obtain

Ay = 0; A, = —Y26T/cl(y1 Shy1£+72 chyll ).
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Substituting these constants into (V.34) and (V.35), we finally

obtain

. — ¥, 6T 5T

s hy,x L xl),

v ¢y (yach Yxlﬁ.;;;h\‘,l) vixd c ( ~x<) (V.42)
P e 10 (L LA (—l<x< 1),

ey (Yachy, [ 2 v shy, )
Let us note that the inverse symmetry of the longitudinal force
diagram was to be expected in view of the symmetry of the system
and the inverse symmetry of the exterhally applied loads r~.

Formula (V.42) shows that in the absence of additional creep
forces produced by the friction in the brake shoes and the journal
boxes, P and £ must vanish. Furthermore, because of the inverse
symmetry of the longitudinal forces on the interval -« < x<», it
follows that when the interaction between the rail and the supporting
foundation is elastic, there is no creep even in the presence of
forces 1t applied by the train to the rail head, since the magnitude
of the creep Ec is, except for the multiplying constant 1/EF,
equal to the area under the longitudinal force curve.

Setting z = 0 in (V.42), we determine the value of the

constant Dl:

D. — — ¥3 8T chy; ! +.£Zl-« Yyshy, 18T o
Yo (Yachyi i+ vish v i (Vachy, [ yishyl)

Substituting this value of Dl into (V.38) yields the expression
for the displacements in the region %2 < x <» in front of the
moving train,

STyishyil o en (zx< A (V.43)

T TN T
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W

Finally, making use of (V.39), we can determine the expression

for the longitudinal forces in front of the moving train:

= : —:Y‘TSh Vil —-1.(4'-—1.) ! : '\*
P= by T tysinn ¢ o << )} (V.44)

It should be noted that

2 = . =
Yl : cl/EFdx ;i 6T T6X.

For x = 2 the values of the longitudinal force P1 computed
according to the formulas (V.42) and (V.44) coincide, which
provides a convenient check on our calculations.

There is no need to construct longitudinal force and
longitudinal displacement diagrams for the region -=» < x < - %
behind the moving train in view of the symmetry of £ and the
inverse symmetry of P.

Let us estimate the creep force P(%) in the rail cross-section
underneath the first axle of the locomotive. Substituting x = 2

into (V.44), we obtain

—YeTshy, !
Y(v2ch vy L --yshy ) - (V.45)

P(l) =

Let us compute the argument 712 of the hyperbolic functions for
the following values of the track and rolling stock characteristics:
rails - P50; F = 64 cm?; E = 2.1 x 10° kg/cm?; wooden ties,
1840 per km; fasteners of type K; medium grained sand ballast;
n = 48 kg/cm?; m = 4.56 cm; train length, 2¢ = 80000 cm; car
length, éx = 1400 cm; car weight, Ql = 60000 kg.

Load per unit length of rail head produced by train deceleration:

T = 1.0 kg/cm, which corresponds to a load of 2.5 T per 12.5 m

rail length.
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Auxilliary parameters:

o néx + le = 340 000 kg/cm:

1
Yy = Vcl7EF6x = 1,34 x 10-3 cm—l; le = 53.6.

For such large values of the argument one can use the approximationg

sh Y% = ch Y12 = 0.5 exp ylz,

which reduce (V.45) to
P(2) = =y ,t/vy (v, + v7).
For the value of Y, we obtain
v, = /n/EF = 6 x 1074 em L.
Substituting the values of all the parameters into the formula
for the longitudinal force at x = &, we finally obtain
P(2) = -230 kg.

Thus, when the interaction between the rail and the rail

supporting foundation is elastic, the maximal forces in the

moving train zone are insignificant, and need not be considered.
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CHAPTER VI

STABILITY QUESTIONS FOR CWR TRACK

At the present time CWR track is a rcality. Because of
its technical and economic superiority, CWR track is beginning
to displace jointed track. Practical experience indicates that
under certain conditions the track is stable. However, the
stability problems for CWR track has not been completely solved.

Scientific investigators in the Soviet Unicn and abroad
have been studying the stability problem for CWR track over a
period of thirty years. Among the most important investigations
we can single out those of K. N. Mishchenko, C. P. Pershin, A. A.
Krivobodrova, A. BlOCh, G. Zanden, I. J. Nemesdy-Nemesek, R. Levi,
and M. Numata. Investigators working on the stability problems
for CWR track have been making an incorrect assumption - they have
been replacing the actual track parameters at the moment of
buckling by the parameters which characterize the neutral equili-
brium state, i.e. by parameters obtained by averaging with respect
to the deformations which arise when the track is in the process
of losing its stability, while these averaged quantities were
found to depend on the parameters of the track befcre and after
the onset of buckling. Even if we assume that the neutral
equilibrium state, which corresponds to the moment at which
buckling is initiated, depends on the past history of the system
before buckling, we cannot possibly admit tha; it depends on the

future states of the system.
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Present day stability calculations do not take into account
the effect of the moving train, which changes many of the track
parameters in the regions in froht of the locomotive and behind
the last car. The solution of the stability problem in the
presence of additional creep forces, which arise in the region

in front of the moving train, deserves special attention.

1. Determination of stability conditions for CWR track

The problem will be solved under the following assumptions:
1) the longitudinal forces P are the same in both rail lines;
2) the radius of curvature R of both rail lines is the same,

R = const; 3) as the track is deformed, the ties are displaced
parallel to themselves.

It follows from the second assumption, which is justified
by the fact that the radius of curvature is considerably larger
(hundreds of times, or even thousands) than the track gauge, that
the bending moments M and the shear forces Q are the same in both
rail lines.

Let us isolate a track element of length Ax, egual to the

distance between adjacent ties, and let us examine its equilibrium

(Fig. VI.1).

Fig. VI.l. Equilibrium conditions for a deformed track
elements under the action of longitudinal and transverse

forces
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Summing up the moments about the point 0, we obtain

[M_=2aM+2m-2Q2R tan 2% - 2py+2(P+aP) (y+ay)=0.

Dividing this equation by 24Ax, and taking into account the
approximations
2R tan(A¢/2)/4x = tan Ad/Ad = 1
and
2(P+AP) (y+Ay) = 2Py + 2PAy + 2yAP
yields the equation

i R
Replacing the ratios of increments by derivatives, and introducing
the notation
m/ax = - f£,(y"),
which expresses the fact that the moment applied by the rail to
the fastener is proportional to the angle of twist of the rail

with respect to the tie, we finally obtain

dM_. ] - r []
ax - f1vy") + Q- Py yP'. (vi.1)
Let us find the sum of the vertical components of the forces:
z y =-Aq -20Qcos A% + 2 Psin A% = 0.

Here we have neglected the term 2APsin(A¢/2)=APA¢, since it is
small compared to the others. Dividing the equation by 2 Ax, and
taking into account the approximations

2sin %A¢/Ax =~ ginA¢/Ra¢ = R—l;cos %A¢ = 1

we obtain
- AQ/Ax - Ag/24%x + P/R = 0.

Now, replacing the ratios of the increments by derivatives, and

introducing the notation
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a/28x = £,(y),
according to which the force applied to the tie depends on the
displacement, we are led to
aQ/dx = -f,(y) + P/R (VI.2)
Differentiating (VI.l) and substituting for dQ/dx from (VI.2)
d2m/dx? = £'0(y") = £2(y) + P/R - 2P'y' -Py" - yP" (VI.3)
Finally, making use of the relation which determines the
bending moment in a curved beam (see Fig. VI.1l)
M = EIy" + EI(A/R)',
where X is the longitudinal displacement of the rail cross-
section, we obtain
EI LYIV + (A/R) ™ -f'l(y') + fz(y)+Py"+2P'y‘+P"y=P/R (VI.4)
Here R and P are, in general, random functions of x, and fl(y') and

fz(y) are also random functions.

A special case of this equation is derived in the paper of

Ignyatich [14], with some errors in sign, however.
Now, let us find the sum of the horizontal components of the

forces,
}x = - 24P-AG-2Qsin(a¢/2)= 0.
Dividing the equation by 2 Ax, and making the same approximations
as before, we arrive at
AP/Ax - AG/b0x-Q/R = 0.
Finally, replacing the ratios of increments by derivatives, and
taking into account the fact that
AG/bx = ¢ (A),
where ) is the displacement of the tie along the track, we.obtain

dP/dx = -4¢(r) - Q/R. (VI.5)
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In discussions of track stability, we will consider compressive
rail forces to be positive.
Integrating the expression for the derivative of the longitudinal
force, we obtain
P =B+ c.
Here B = G + J(Q/R)dx; G is the force which results from the
elongation of the rail axis due to transverse track deformations;

c is an arbitrary constant. Furthermore, let us assume that

. I
P =P(X,Yy,¥Y'/¥y",¥y" .,y V)r

B = B(x,y,y'.y":y", YIV)-
It is not difficult to see that when y = 0,

G1 z0; z0.

yZo QlyEo

From this, it follows that

B(x,0,0,0,0,0)z 0.
Furthermore, one can write

p(x,0,0,0,0,0) = P
where P is the rail force in the undeformed track. Consequently,
the constant of integration is ¢ = P and the longitudinal rail
force can be determined from the expression

v, | (VI.6)

PO,y y oy vyt = Pyt BOXy,y' ¥y " y™ oy
The function B is continuous and infinitely differentiable.
Let us find the second derivative. Making use of (VI.2) and (VI.S),
we can write
d2B/dx2=¢"' (1) +(1L/R) £, (y) - PO—B/RZ. (VI.7)
It can be seen from Figure VI.2 that the elongation of the rail

axis is given by the expression

e=dr/dx + dn/dx + y/R.
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On the other hand, since the elongation results from the action

of the force B,

¢ = B/EF.

Consequently, making use of the expression (IV.1ll) for the difference

n between the length of the curve and its projection, we obtain an

expression for the displacement of the rail along the track,

o]
S
X

A= [EB‘ SRS P , (VI.8)

Fig. VI.2. Elongation of the neutral axis when the rail
line is displaced

Let ¢()) be represented by a power series

o«

6 (1) = ZO a; A

i

Substituting for A from (VI.8) and dlfferentlatlng 4 (A), we obtain

@ (M) A (ayf 2apd -l Bagdht oL na kL)
) %
J§; 1 "2
RS I PP
o0 ) * n- 1 (VI'9)
| B
nanl-——S [75/5 Ty ) — - ]d\f -t J

_-‘g& . ‘.I MR T [ v
LF B 'R 0, (x, ¥,y ¥y y™).

llere Ol is a nonlinear function of the transverse displacement
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y and its derivatives. Substituting from (VI.9) into (VI.7), we

finally obtain

d*B a, 1 R T U o S
W-_(—E_F__I_W)B R[fz(}) ay Y] - R: 0’——0-

(VI.10)

This equation describes the process of longitudinal force relaxation
due to track deformation.

An analysis of (VI.9) shows that the function el is of degree
two or higher in y and its derivatives.

Let us return to the examination of equation (VI.4). This
equation is not homogeneous; consequently, y 2 0 is not an
equilibrium solution. Because of the continuous increase in the
compressive forces due to rising temperature, the deformations
grow and the curve is displaced toward the outside. However, no
bifurcation from one equilibrium form to another takes place.

The deformation process proceeds in one direction, the track being
displaced from an initially undeformed state. Such an instability
is frequently called an instability of the second kind. It is

due to the presence of active forces.

As the track deformation increases, so does the reaction of
the ballast to the displacement of the ties, as a result of which
an equilibrium is established, a different equilibriumstate
corresponding to different values of compressive force. It should
be noted that the equilibrium state established in the process may
be stable or unstable. Whether it is stable or not depends on
the parametric loads. When there is a loss of stability due to the
action of parametric loads, a bifurcation from one form of equili-

brium to another takes place. In other words, it may happen that
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for certain values of parameters the system has several

qualitatively different eguilibrium states, and the transition

from one such state to another takes place discontinuously.
Substituting into (VI.4) the value of 2" from (VI.6), and

taking into account the fact that R = const, we will obtain

, fp EI T B
E £ 00+ )+ v (P—) +2yP 4 P (y— 1) =

——ERL vy + 07 = %,
where io = YI/F is the radius of gyration of the rail for track
deformations in the horizontal plane.
Suppose the longitudinal force is P and the track is displaced
to the outside of the curve by an amount y = §. Let us measure
the transverse displacements of the track from its axis in the

equilibrium state. Introduce the new coordinate, u =y - §.

Then, the equation derived above takes the form

Elu'Y —f] («)-I-f2 (u - &) 4- u"[P (x, -8, 0", 0", i, u'v) - .24 |-
+2u'P (x,u-}-8,u' 0", 0 1Y) -
.2
+ (U + b—iR?_) P (x, w8, u', 1", lllj,: “w) - (VI.11)
El 2 1 o o v
—— [u’u”’—(u") ] = — P (x,u--8, 00, 0, u"Y). (VL1
R R ) ( } |
Now, let us expand fz(u+6) in a Taylor series, g ;
u dfs (@) um A fy (1)
Pt = RO+ gy | Tt g | s (vi.12) ;

=f3(8) + uf'2. w(0) 4 0z (13, 4, ooy un, L), :
The nonlinear function 6, is of degree higher than one in u, and

can be neglected when considering small deformations.
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From Figure VI.3-it is easy to determine the elongation of
the rail axis caused by its displacement by an amount § to the
outside of the curve. The magnitude of this eloﬁgation is

e = 6/R.

Taking this into account, we obtain:

B(x,0+6,0,0,0,0) = EF§/R, P(x,0+6,0,0,0,0) = PO - EF§/R,

P'(x,0+6,0,0,0,0) =z 0, P"(x,0+6,0,0,0,0)

m
o

Fig. VI.3. Diagram for the elongation of the neutral axis
due to a displacement by an amount § of an element of the
rail line from its initial position, assuming the angle
which subtends the arc does not change

Substituting from (VI.12) into (VI.11l), setting u = O, and
taking into account the expressions just derived, we obtain

1 . grsr™%. (VI.13)

£,(8) = P_R
Thus, when conditions (VI.1l3) is satisfied, the equation (VI.1l1)
has the trivial solution, the system described by this equation is
in equilibrium, and the load which satisfies (VI.1l3) is a pérametric
load.
Substituting (VI.12) into (VI.1l0) and changing over to the
variable u = y - §, we obtain

,su" ,uIV) - (al/EF)B(x,u+6,u',u",u"' ,uIV)

B"(x,u+é,u',u

- &L [uf) (6) - a;(urs) |= 6y + R 7L (VI.14)
2,u 1 ! 2°
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It is easy to see that when B = B(x,0+6,0,0,0,0) = EF§/R, equation
(VI.1l4) becomes an identity.

Let us represent fl(u') in the form of a power series,

o= i,
fi(u') =] b;u
i=0
Differentiating yields
Fria') = byt i by« 2070 | by - 3@V | b (@) (VI.15)

I MU N N (A TURN THAN T 8
where 93 is a nonlinear function of the derivatives of the
transverse rail displacement. Now, substituting into (VI.1ll)

uIV

for the parametric load P(x,u+s,u',u",u", ) = PO - EF§/R, and

taking into account the expansions (VI.12) and (VI.1l5), we can write

ElutV [ “”<[)o“ by I/,I 6— ;;{) Cufi (8) - Gy, (VI.16)
AY \
where
6, = 6, - 0, + EIR_qu'u"'+ (u")zj
4 3 2 . .

Since the nonlinear function 64 is continuous, a complete
solution of the problem of finding the boundary of the domains of
instability in this case can be based on the linear equation in
the variations. This is quite evident on physical grounds since
the function B4 is small at least to second order. Consequently,
the critical pafameters of the system described by (VI.1l6) can be

found from

v LF AN ‘
IJu“¢4¢(PW_bl R o 1”)"“hJA® .0, (Vi.17)
To obtain the general solution of (VI.17), we must solve the i

cquation £
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Elat ot (Py— by —EE 5 b

The roots of this equation are z = +(at8,), where

) ET EF~
———  pyp, Ll EL
o fou® "% ' R TRT
J = 4E] dE]

[ P EF L
S VARV PN S
) iE ET T

The general solution of (VI.17) will have the form

- . : ] +
u clslnhax singx + C251nhax COSBX (VI.18)

c3coshax singx + C4coshax cosBx

Here C; are constants of integration.

Let us consider the infinitely long track to be divided into
two parts, and let us examine the semi-infinite curved beam on the
right. Geometrically, the semi-infinite curved beam can be

represented by a spiral of radius R and infinitesimally small pitch.

Let us place the origin at the free end of the semi-infinite
length of track, and let us assume that there is no deflection at
infinity. The solution u will then have the form

a

u = Ale*axsin Bx + Aze- Xcos Bx . (VI.19)

Differentiating this expression, we obtain
u' Ay (- e osin fa - Be 7T cos ) -
2o Ay~ ae - cos Px — fle F sin fx);
W Ay Ha? — By e sin flx — 2afe* cos Bl -
- A, (@ — B2 e 7 eos fx — 2ufe *sin pxl;
u” = A l(—o? |- 3ap) e r sin e - (B=x*p — P e * cos Px) -
+ Ao [(—-a? - Bup?) e e cos P |- (3%2B -|- B?) e—*sin fx].

At the free and x = 0 we have
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1 (0) == Ay == uy;
W (0) -= fA, —ad, = uo; (VI.20)
u (0) o Qufly b (a?—PBY) Ag = s
Oy @A) Bapre af) A, g -
The buckled shape of the track can be symmetric or antisymmetric.

We obtain
y(0) = y"(0) = 0 for the antisymmetric case,

y'(0) = y"(0) = 0 for the symmetric case.
Substituting the boundary conditions into (VI.20) results in two
equations for the determination of the critical parameters for each
of the two cases.

For the antisymmetric case

Y(O) = Az = 0, YH(O) = _zaBAl = 0,

from which it follows that of = 0, and, after some simplifications,

ILF EF
=R

The buckled form is shown in Figure VI.4,a.

[)) -9 I’/[:Tf’.!“u—((g; l bl

For the symmetric case
y'(0) = BA, - oA, = 0,

y" (0) = (3a28-83)Al + (3a82—a3)A2 = 0.

Setting the discriminant equal to zero yields

B(3a82—a3) + a(3a28—83) =0,

or
2a8(a2+82) = 0.
Thus, oB = 0 as for the antisymmetric case, and
Il EF
Po-= 2V EFfau(® byl 8 bz

Thus, the critical load is the same for the symmetric and the

antisymmetric buckled forms.
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For the symmetric case, the buckled shape is shown in
Figure VI.4,b. The solutions obtained do not given any information
about the amplitude of the deflection during the critical and the
post critical phases. To obtain the complete solution it is

necessary to take into account the nonlinear terms.

a) u
"\‘\’/]0/\\ r
b) u
T~ z
i 0 sy

Fig. VI.4. Buckled forms of the track; (a) antisymmetric;
(b) symmetric.

To summarize, we have obtained two equations which connect

the parameters Po' R, and é6:

Py ,..9
,2(6) = 'IQQ—I;I' 725',
(VI.21)
oV TETE e g EF s El
Py = 2V Elfa, 4 (8) - by - PRNES

Let us recall that b

= dfl(u')/du' fll,u'(o)' and

1 |u' =0
represents the slope of the curve fl(u') at u' = 0. Thus,
in order to construct the domains of instability it is sufficient
to know the graph of ag(y), i.e. the dependence of the transverse
force transmitted from the rail to the tie on the transverse rail
displacement, and the parameter fi'u,(O) = m'(0)/ax (m'(0) is the
slope of the curve of the moment transmitted from the rail to the
tie, as a function of the angle of twist of the rail with respect
to the tie at the point u' = 0).

The functions Ag(y) and m(y') have been experimentally investi-—

gated fairly thoroughly, both in the Soviet Union (P.F. Isakov,

" C. P. Pershin, M. S. Bochenkov) and abroad (Birman, Raab, Nemesdy-
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Nemesek). Figure VI.5 shows the function Ag/Ax = 2f2(y) for
track with fasteners of type K, constructed on the basis of

experiments and calculations of Raab.

.27f2(-"/)} kq/cm

5 L -
s|— 2 _

o N
3 — ) P

2L -

!

0 1 2 J y,em

Fig. VI.5. Graph of the resistance per unit length to

track displacement as a function of rail displacement

(based on experiments and calculations of Raab for a

track with fasteners of type K)

Figure VI.6 shows the graph of the function m(u') for a
superstructure with hardwood ties and fasteners of type K, based

German experimental data [27].

m(u), kg m |
m(———w?”m_ _ |
100 7..4"" :
g
i
$0 AN RS !
i
0 g1 0,2 TN :

Fig. ViI.6. Graph of the distributed passive moment
transmitted from the tie to the rail, as a function
of the angle of twist of the rail with respect to the tie

For making calculations it is convenient to write (VI.21)

in the form

Hi _2l l;l/'.'.u(h) i‘/;,u'-(”) 2 I:I . : !
R ey T TRy O (VI.22) :

Py RI©) | EF ,‘3 ’
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The first equation does not depend on Po’ and can be easily solved
for every value of §, with the help of a slide rule, for example.
After this, the sccond equation can be solved. For each value of
§ we can find the relation between the curvature 1/R and the
longitudinal force P which corresponds to the elimination of the
parameter & from the system (VI.22), and thus obtain the function
Po = ¢ (1/R), which defines the boundary between the zones of

stability and instability. Figure VI.7 shows this function for

a track with the following parameters: P50 rails; I, = 416 cm4;

2
F = 64 cm2; E= 2.1 lO6 kg/cmz; wooden ties, 1840 per km;

type K fasteners; crushed stone ballast.

&

0 2408 §05 60l 8T 0w

Fig. VI.7. Zone of stability in the P_, R space

The functions fz(y) and m(u') were taken according to the
graphs in Figures VI.5 and VI.6. To compute the relation
P, = ¢ (1/R) it is necessary to construct an auxilliary graph

(Fig. VI.8) of the function f2(y). The computations are shown

in Table 24.
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Table 24

5
Y
o~ ey
g N
E | 9 o | oemd |E
=, Cm == R r
N o & | T AR cm | ek
A I o ’
E | S 3
s 3
R I R =
0,0 | 0 6,8 | 1850 — — w | 156300
0,1 | 0,60 | 6:85 | 1850 | 12,6710% | 22,7.10' | 227000 | 156 300
0,2 | 1,37 | 6,30 | 1850 | 6,33-10* | 10.9-10' | 109000 | 119800
0,3 | 1,95 | 4,10 | 1850 | 4,48.108 | 6,46.40¢ | 61600 | 126400
0,4 | 2,25 | 300 | 1850 | 3.89-jus [ 462100 | 46200 | 103000
0,5 | 2,50 | 2,00 | 1850 | 3.50-10% | 3.42.10% | 31200 | 87400
0,6 | 2,65 | 1,50 | 1850 [ 3.30-10% | 3)17-10t |- 22000 | 76600
0,8 | 2,82 | 1,00 | 1850 | 3.10-i00 | 2/16-100 | 20600 | 65500
1,0 | 3,00 [ 0,67 | 180 [ 2,92.108 | 1.67-10 | 16700 | 58100
L2 | 3,087 042 | 1850 [ 2.81.10% | 1.30-101 3000 | 52500
L | 3007 | 0030 | 1850 | 2.76-10% | 1.08-10% | 10800 | 51500
16 | 320 | 0,20 | 1850 | 2,73-100 | 059108 8000 | 52 500

An analysis of Table 24 shows that the quantity EI/fz(d) can

be neglected in equations (VI.22), after which the equations take

the form e
2V ) - [ (0)
Ry
5 (VI.23)
Pu:Rfa(é)'f'EFE-

A noteworthy observation is that for small radii of curvature
(in our case for R = 100 m) the critical force P decreases together
with the decrease in the radius. This can be explained by the
sizable displacement, when the radius is small, of the track
towards the outside of the curve due to the active force P, = atEF
(o - coefficient of linear expansion of steel), and the consequent
appreciable relaxation of the longitudinal force.

The curvature_of the track is not constant. Consequently,
in the stability calculations, one should take the maximum curvature
connected with the presence of track nonuniformities. For example,
if a straight section of the track has a nonuniformity as shown in

) - 2 -
Figure VI.9, the curvature R 1 = 2f/2 =1.6 x 10 5 should be used
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in the computation of the critical force.

f=2cH

— 2= 1M —

Fig. VI.9. Track nonuniformity with constant curvature

along the chord

The dependence of the critical value of the longitudinal rail
force Po = atEF on the curvature agrees well with experimental data
obtained in West Germany [42] by means cf artificially induced
buckling of track with superstructure of type K. The célculated
value is for the critical force in one rail line. Consequently,
in comparing with experimental data, this value should be doubled
since the longitudinal forces in both rail lines were measured.

If in (VI.23) we make the assumption that

[ ]
f2(6) =q, = const, f2,u(6) = k = const, § = 0,

] ]
fl,u'(o) = fl,u'(ué) = ¢c/Ax, & = 2oc/2s

where u; is the average value of the rail twist with respect to
the tie during the buckling process, we obtain
P, = YEIkK + c/px, £ = qOEzC/BPO.
Except for multiplying constants, these formulas are precisely
those which are used at the present time in track stability
calculation. The slightly higher values cbtained with the formulas

in current use result from the fact that they are derived by using

energy methods and approximating the buckled shage.
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In [14] Ignyatich derives the following formula for the critical

force:

P - lﬁ(l.Q. >l>_ -_2;_0
c Yo

[

JQJ‘E;
where Yo is the initial nonuniformity in the track, Eo is the
tie resistance to displacement (const), R* is the radius of
curvature of the curve, and m(y') is the moment of the fastener
resistance to twist. Using our notation, one can write

' *

Yo t 1/R = 1/R,

where R is the local radius of curvature. If one takes into account
the fact that the first term in the expression for the critical
force was e:roneously obtained by examining the system when it is
not in equilibrium, one can write the expression for the critical
force in the form

P_ = EOR.

It is easy to see that this expression is a particular case of the

second of the formulas (VI.23), with § 0.

An analysis of the data in Table 24 shows that over the range
of the values of the curvature encountered in railroad track, the
parameters fz(a) and particularly f;,u(é) vary considerably (by
a factor of several tens). Consequently, the utilization of the
exact formulas (VI.23), and the subsequent construction of the
stability regions in the parameter space Po’ R, yields a more
reliable determination of the stability conditions for CWR track.

It should be taken into account that when the track is in
operation there can occur hereditary phenomena when the ties are
displaced not only along the track, but also in a direction

perpendicular to it. In connection with this, the function f2(6)
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should be regarded as an average, taking into account the

hereditary processes.

2. Stability of CWR track in the section
in front of the moving train
From the point of view of stability, the most unfavorable
section of track is the one directly in front of the locomotive.
Here the longitudinal forces are augmented by the creep forces,

and the track is weakened by the vibration of the rails.

Fig. VI.10. Subdivision into sections with constant

parameters of the longitudinal force diagram for the

track in front of the moving train

Let us use the method of initial parameters to determine the
values which characterize the neutral equilibrium. Suppose the
longitudinal force diagram is subdivided into sections, on each
of which the longitudinal force can be considered constant (Fig.
VI.10). The deflection on the i-th interval can be determined
from

u = Ale—axsin Bx + Aze_axcos Bx + A3euxsin Bx + A4eaxcos Bx (VI.24)
which can be obtained from (VI.18) by means of elementary trans-

formations. Differentiating this expression successively

we obtain
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WA (e sinpr 4 Per Treospx) - Ay (e cos fx —
-~ Pe oV sinPa) |- Ay (zersin P i~ ferv cos Px) +

- A, (ee**cos fv — ferr sin fx);

u" = A, [(@® - p%) e—**sin px — 2aPe—*cos fx] +
+ A, [(&t — P2) e—*cos Bx -+ 2aBe—"* sin fx] +
+ Ay [(@® — PB2) e** sin fx |- 2afe** cosPx] -+
L A, [(@®* — B?) e** cos fx — 2uBe* sin x|,

u' = A [(— a® + 3ap?) e—**sin Py 4- (322 B 4- f7) e~ cos fx] 4
4 A [(—a? - 3ap?) e~*cosfx -I- (-~ 3a?P - P e " sin pxl] -+
+ Az [(a® — 3ap?) e2* sin Px |- (3u2 p — P?) e2* cos fx] +
+ A [(a® — 3ap?) e~ cos Px + (—— 3x? B 4 P7) e~ sin fx].

At the free and x = 0 we obtain

w(0) =: Ay + Ay = ug;
w' (0) -- Ay —ad, - BA; | ady = u('ﬁ
w" (0) = —aBAy -1 (@2 — B?) Ay - 2uBAy |- (@2—-BY) A, - uj; (VI.25)
w"(0) = (a2 p + P 4y |- (— 302 —a) A; +
+ (3a2p —B%) Ay - (—3af? }ad A, = ug .

Let us solve these equations for Al, A2, A3, A4. We can transform

the augmented matrix of the system (VI.25):

0 l 0 l 1o |
B —a B a tdl
—2p  ar—f? %ap at —p2 | up |7 |
302 —PB° 3af?—a® 3a?P—P? a®—3af?|ug
\ 010 1 ’ Uy
| p 0 B 200 g - U
-

‘ 0 0 4af X g |- g - 2 |- 1y (a? |- B
10 0 0 —da(e?1-B%) | uo — uo (30— P?) - uo- 2 (2 -|- B7)

Consequently, we obtain the system of equations:
Ag 'l*' A‘ = ”o;
By LBy e, ) Hyt,
daP Ay 1 A A ug |-y |y, (|- B2);

Cla(@? ] BN A g g (B B wy Qe § ),
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25)

which has the unique solution:

Ay g e e L
T TP @TET " b BB
g g T
& ”°E%$f*’“4;$_§?5 .”'lﬂ*”“4nmL¥Fﬁ; A
At g+ U 9 TR

Substituting the values of the constants Ai into (VI.24), we obtain,

after some simple calculations,

+_asinfxchax — Bcos ﬁx shax

. sinfrshox
o == g1y —

2R T o0p

(8aB-~—a")<»p_[5_x chax -+ (Ba2 B — P3) cos fxsh ax T (VI.27)

2af (a? 4- B?)
(B2 -~ a?) sin Px sh ax -|- 2af cos pxch ax
o T 20f )

-+ u

Let us introduce a fictitious longitudinal force defined by

Pf--P“fl (1 (0) Po"fl ' (0)"%

From an analysis of (VI.l6) it follows that under the action of
the fictitious force Pf, the curved beam (with radius R) under-
goes the same deformations as the system being investigated,
which represent a hinged framework with friction (here we have in
mind small deformations).

Let Qo denote the vertical component of the sum of all the
forces to the left of x = 0, and Mo - the sum of the moments of
these forces with respect to the point x = 0, u = 0O:

QO=QZ+anndMO=MZ+Mg.
The superscripts v and h indicate that these components of Qo and

Mo are produced by vertical and horizontal forces respectively.
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It is easy to see that the projection of the horizontal

forces Qg = 0, and that Mg = - Pfuo‘ On the other hand, one can

write (assuming that a positive moment produces a negative

" curvature)
Mv ”n ! V " 1]
o = — EIu, - EI(A/R) | ~ and Q) = - EIuy = Pcu_,
Xx =0
L}
or, discarding the term EI()/R) } . which, was previously shown
x=0

to have no influence on the critical parameters for curvatures

appropriate to railroad track, we obtain

"ne ] "
Qo = - EIuo - pfuo and Mo = —.EIuo - Pfuo,

from which it follows that

u;' = - (9/EI) - (Pf/EI)ué ; u; = -(M/ET) - (P./EI)u,.

Substituting the expressions from ug and ug into (VI.27),

we obtain
Qo asinfxchaxr-—pPcosPrshax M, sinPxshax

== — =

El 20B (@ - B%  EITT 2f

-~ asinfrchaox |- BeosPrsl wx n (VI.28)
e = " %af

(A BQ) sin fxshax |- 20 cos frch ax

- 1y Sap

Let us denote the term whichmiltiplies —(QO/EI) by H;:

Ho asinprchax —f cos fx sh ax
T 2By

It is clear that the terms which multiply —(MO/EI), Ug and ug
are the successive derivatives of Hx' Consequently, we can write
Qo M ' " "e

o ' 4
= - _ .29
u BT HX gt Hy * uon + u H_ . (VI.29)

The quantities which multiply the initial parameters are
linearly independent. Each one of these functions represent
the influence on the deflection of one of the initial parameters

with the other three being zero.
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Let us compute the first three derivatives of u with respect

to x:
"en — ?01 Ho—:
0w — EQ-.;— M
o
w2

-”n TP ¥ '.“-
T I, Ao Hy4- 1o My
My - e .
.E_’I. Ho - wo HY o Y
_. %’;‘ 1Y b updY |- u 1Y,
My HY - ugHY - ug Y
El"" e

(VI.

Let us also write down the expressions for Hy and its derivatives:

a sin fxch oy —Pcos Bxshax |
Ho= =g m

sin prshax,
T !

A=

. BCOSBNﬂ‘ax4:EEHlE§Chax.

Hx - —— )

T

4ap (a*—p?) cos Bxchax

20.p

(@2 — P?) sin fashox - 2up cosPpxchax

2ap

o (o — 3P sin v ch oy -|- B (B2 — B cosPrshax

2a.p

4- (at — 6a2P? -|- f4) sin Bxshax

Hyv-

2ap

| (B — 10p% -} SpatjcosPrshox

2ap

(a® — 1007B2 - ') sinfixchax
QTR A e

It should be noted that directly in front of the train,
where the longitudinal force attains its maximum value, it may
) ] .
happen that P, > 2/EIf£'uld) + fl,u (0) + EFS§/R

the general solution of (VI.1l7) can be expressed in terms of

trigonometric functions:

u = B1 sin YyX + B

2 cos ylx + B

1

3
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In this case,

sin Yo X + B4 COS Yy X,

30)



where

Pg—bl‘—‘

EF

[y, E: ‘.‘2.,
EF )

R i Y

2E]

2E1

. 3/ P

TARE El "’

EF

I o ;:T:T—A::EF::; 5:__—__7_—__._
®Y / R LA
i Ty i/

However, in the method of initial parameters the expressions

for the deflection and its derivatives can be written in the form

(Vi.30).

are given by ([32]:

H, =

H, -

1Y -

]1\”

COS Y1 X — COS Yu X

Hoo= TN SRS ¢ i@l@.ﬁ :

3 . 3 ..
_Yisiny X —yasinye x

In this case the function Hx and its derivatives

I .
-~ SH1 X
; v Y2

|
§~Mn1qx-~

v: —vi

75—t

]

’

2 2
Yz Y

2
= Y1COS Y1 X |- Y3 COS Yo X

3 2 ’
Y2 - %1

i — i '
,VICOSPy X —Y3COS Py X,
B
- y‘? sitnyy x_‘J,'__V?..Sh_‘_‘V.?f
' T2 - .

Equations (VI.30) constitute a special case of more general

equations investigated by Rippenbein

[32]. We stress the fact

that the quantity Mo’ which enters into this equation, is not the

bending moment at the cross-section x =

moments of the forces about the point x =

0, but is the sum of the

0, u= 0.

Let us return to the problem of deriving the equilibrium

equations for the track, with the assumed force diagram (see
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Fig. VI.1l0). Suppose the train is moving towards the right, and
that in the section where the first locomotive axle is located,

the creep force is Pcr’ Furthermore, let us assume that the creep
force decays over a distance of length z, its law of variation
being specified for any given type of superstructure. In addition
to this, the track is affected by the temperature, which produces

in it a longitudinal force P, = atEF. Adding up the creep force

and the temperature induced force, we obtain the actual longitudinal
force diagram in the section of the track in front of the moving
train.

Since the track is firmly pressed to the subgrade by the
train, it can.be considered fixed at the point A where the first
locomotive axle is located. Let us subdivide the longitudinal
force diagram into several parts, and determine the parameter values
for which determine the stability conditions ,on each of these.

If the load has the critical value, it must, according to
(VI.1l3), satisfy the condition

£,(5;) = P—gi- - EF R—i , (VI.31)
Since the quantities Pos and R are known, the parameter §; can be
determined for each interval.

Since the train is moving, we can consider the rigid constraint
at the point A to be applied after the transverse displacement of
the track into its equilibrium position. Thus, the constraint
does not produce any stresses due to the displacement of the curve
by an amount §. l

Knowing the value of Gi’ one can determine the values of all

the remaining parameters for the i~th section. Such quantities
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are f2(6i)and fz’u(éi), and also the parameter bl = fl,u'(o)'
which has the same value for all intervals.
The boundary values at the left hand end-point of the first

interval can be expressed in terms of the initial parameters Uy

u MO and QO in the following way:

fe) ’
ftyo == O;

W - 0
My My (VI.32)
Qm == Qo-
Letting MO and QO be the two fundamental parameters to be
determined, let us denote by the symbol ([V] the transformation
(VI.32), with the matrix of coefficients
|°
L0
Ve
i “ ]
i

(VI.33)

- O C

Furthermore, making use of (VI.30), and taking into account that
Pf=PO - bI - EF§/R - EI/R2 = 2EI(a2—82), we will obtain equations
which conhect the parameters corresponding to the two end-points

of the first interval:

0y

’ s . L] A” " ’ ' .
uy =ty My A “'”H‘*T}H‘”m Iy (VI.34)
’ v . /II 4'.\]],, " ("’u /_I’ .
iy : e H | wodhy —"ET//P"E] v
My = iy E1 (2 (@2 — B — MY ] — why EHY  Myo 1174 Qo113
Qu = — o ETHY #2015 £1[2(ei—-7) — HY |-+ M HY 4 Qo Hy

Let us denote by [Al] the transformation (VI.34), with the

matrix
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. H, H (VI.35)
A i "E7"‘ETL
H, Hi
) A= HyY Hy —¥ —Eh
El{2(ai—p3) ~ HY| —EIHY iy’ n
—EIHY" Erfe@i—-ph)—uy | ¥ H

- . 0 ' »
In order to obtain the quantities ulz'ulz’Mlz’Ql in terms

of Mg and Q,s One must multiply the transformation [V] by the
transformation [AlI:

[V A)) = [VIx[a;].
The matrix of the coefficients of the transformation [VA1] can be

easily found by multiplying the matrices:

it
TElI T EI
H i,

Al =l—5F —FEil (VI.36)
T T
my

The transition from the end of the first interval to the
beginning of the second one is effected by means of forumlas
connecting these intervals. Since the parameters u, u', M, and Q
do not change in going from one interval to the next one, the
transition matrix HBlﬂ corresponds to the transformation

Hyy - Ny,
weo o Uy i

Mo My - (Py, — Pg)uyg I
Q‘.‘u T Qu-

(VI.37)

In mathematics a different notation is employed. The matrix
which is multiplied is placed last, while the multiplier matrix
is placed first. However, in problems of structural mechanics
the notation used above is more convenient [31].
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and has the form

. (VI.38)

b 0
1Byl ==t

vIPFI = Pf‘
I

i}

S O - O
o - o O

The expressions for the parameters UsgrlUsgr M20 and Q20 in
terms of the initial parameters can be obtained by performing
the multiplication
We can get to the end of the second interval by performing the
multiplication
[VAlBl]x[Az] = [VAlBlAZ], (VI.40)
where [A2] is the tranformation which connects the end points
of the second interval. It can be obtained from (VI.34) by
replacing the index 1 by 2. Continuing in the same way, we
can reach the end of the n-th interval by means of the trans-
formation
[VA1B1A2B2"‘Bn—1An]' (VI.41)
This transformation expressed the parameters of the end of
the last interval, which is siutated in the zone of decay of
the longitudinal creep forces, in terms of the fundamental parameters
4

MO and Qo’ The matrix of this transformation will have two columns

and four rows. Multiplying (VI.41l) by the matrix

L l 0 0 0”
TR B Loo)
P P 0 (ﬂf
“ 0 0 0 1)
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.38)

" 10)

1)

. rs

we will obtain the initial parameters of the semi-infinite

track, which can be considered to be the (n-l)st interval.

The initial parameters of the semi-infinite track will be:

Uni1,0
U;-+|,o;
Mpgr.0 = — Elm'.; 1.0+ 2E1 (a:4.| — ﬂ,': 1) iy, 1.0
Qnito=—Elung o4 2E1 (@i = Bigi) tthyro.

Substituting into (VI.42) the values of u
n+l,0

n+l 0and u

(VI.20), we obtain

Mypr0=EI (3an+| —ﬁn| D) ttn 10 - 2Eatn ity 1.0}
Qn+l o= — 2041 L,(an-[-l - Papn) dagr.0—FEl CHYES Bat1) Unii.o

or, solving the resulting equations for un+l,0 and Un+1,0’ ¥e

obtain the expressions:
1 - Q L 2anH
WnJ 0T T 2y
El (a2 - ﬂ§+l) ' El(aZ,y-I-Ba H)

2a"'“ 4 Qn ‘o 3434—!"“&“—1 .
EI (ohyr - Batr) ET (i -1- Br1)

Haf1,0 75 — Mn-(- 1.0

Upipa,0 = M., WO

Let us rewrite these expressions so that the right hand

sides are zero:

l QCLn.q. {

Unir,o -+ Ma n. , 2 O
nH.o nHOE’( Pni-t - |- pni-l) I Q llo”(aiu - p'le)

. 2ay i1 3&21 i ﬂn+l

Uni1,0— Mapr.0—— . = Qny. L_hw__ﬂo
Hhe RN @21 Biy) O (@2 - PR )

from

(VI.42)

(VI.43)

Let us denote this transformation by [W]. The corresigonding matrix

is

R YL 201
| [':,(a'z'll a5 Bﬁl'l) I ’(aul Nk ﬂlll l)
2ann '3(1",' . BnH

1 (“nll |- Bnil) /1(’1““ [- B"ll)

wy -
0 —1-
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The transformation [BnW] represents the imposition of the boundary
conditions on the right hand end-point of the n-th interval.
Multiplying the transformation (VI.4l) by [an]’ we obtain
[VAlBlAZBZ . .An] X[BnW] = [VAlBlA2 .. .AanW] . (VI.44)

The matrix of this transformation has two rows and two columns.

Thus we will have two homogeneous linear equations for the
unknown guantities My and Q,- The critical state is determined
by the condition that the equations have a nontrivial solution.
This condition is the vanishing of the detriment of the matrix of
the transformation (VI.44):

|VA1B1A282. .«A B W| = 0. (VI.45)

If one is required to determine the critical value of the
radius for a given force, one should prescribe various values
of R, compute the determinant in (VI.45), and then construct its
graph. The points of intersection of the graph with the abscissa
determines the values of R for which the determinant vanishes.
In a similar way one can determine the critical temperature for
a given radius.

In some cases the computations for CWR track should be
carried out taking into account the displacement & prior to
buckling, since for large values of &, large transverse displace-
ments may endanger the safety of the moving train even if the track

is stable (if there is no bifurcation from the state of equilibrium).
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