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Executive Summary 

This report presents research on a new model as an alternative to the U.S. Department of 
Transportation grade crossing Accident Prediction and Severity (APS) model, which dates back 
to 1986. This report follows the steps in developing the new model, presents the modeling 
results, and validates the new model in comparison to the APS.  
In the nomenclature of AASHTO’s Highway Safety Manual, the new model is a safety 
performance function (SPF). SPFs generate metrics (e.g., predicted accidents by severity type) 
indicating safety (or risk, insofar as more safety means less risk) and have been applied to a 
range of highway facilities. The SPF approach is applicable to grade crossings, individually and 
to aggregated collections (i.e., populations)1, as well. 
The new model derives from a policy perspective on grade crossing safety, a review of the data, 
statistical analysis, and validation. The authors conclude that the new model outperformed the 
APS, and its adoption would result in more accurate risk ranking of grade crossings, more 
rational allocation of resources for public safety improvements at grade crossings, and the ability 
to assess the statistical significance of variances in the measured risk at grade crossings. 

Key Conclusions 
The preliminary data review indicates a new model could replace the APS based on the key 
drivers of exposure and grade crossing warning device type (i.e., the data show that risk 
increases with exposure, and decreases with a more protective warning device type). 
There is justification for a single model with warning device type category as a variable rather 
than separate models for each of the three warning device type categories. 
In the U.S. there are 105,377 grade crossings that are public, not closed, not grade separated, and 
that have non-missing, non-erroneous values for exposure and warning device type. From 2014–
2018, there were 8,467 accidents at these grade crossings. 
An aggregate analysis of these grade crossings shows that relative to a passive crossing, an 
average lights crossing had 73 percent less risk per exposure than a passive crossing. An average 
gated crossing had 63 percent less risk per exposure than a lights crossing. 
The findings of the above analysis indicate a functional form with exposure, warning device 
type, and other grade crossing characteristics. 
Model estimation using the zero-inflated negative binomial (ZINB) regression yielded 
parameters of the expected sign and magnitude, and had strong statistical significance. 
The empirical Bayes (EB) method accounted for accident history while correcting for 
“regression to the mean” bias. Adjusted results with EB produced predictions that more closely 
track the actual counts than did the APS with its (non-EB) adjustment process for accident 
history. 

1 The “population” of grade crossings refers to all public grade crossings in the U.S. that are not closed or grade 
separated. The analysis sample is a large subset (over 100,000) of all grade crossings. 
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The new model severity component determines the probabilities that an accident will be of one 
of three severity types: fatal, injury, or property damage only. The severity component of the 
new model was derived using multinomial logistic regression (MNL) on the accidents in a 6-year 
period, 2014–2019. In this period there were 11,131 accidents at public crossings. Of these, there 
were 9,870 at grade crossings with non-missing, non-erroneous data. 
These 9,870 accidents were included in the severity model estimation. The MNL regression 
shows that the best results were obtained with explanatory variables: rural or urban, maximum 
time table speed, number of daily trains, and whether a crossing had a lights warning device. 
Validations indicate the new model outperformed the APS. One of the validations looks at 
cumulative risk at crossings, with crossings ordered from greatest to least risk (i.e., accident 
count). The riskiest crossings in the data sample include 7,822 accidents at 6,409 crossings in 
2014-2018. Applying each model (new and APS) to the data, the new model predicted 4,853.3 
accidents (62.0 percent of the actual count) whereas the APS predicted 2360.2 accident (30.2 
percent of the actual count). 
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1. Introduction

1.1 Background 

1.1.1 About the APS Model 
The U.S. Department of Transportation (DOT) Accident Prediction and Severity (APS)2 model 
has been used to assess accident risk at highway-rail grade crossings by all levels of government 
since the late 1980s. The assessments of accident risk at grade crossings are foundational 
information that guide the management of grade crossings, the identification of high-risk 
crossings (“hotspots”), and the allocation of resources for improving grade crossing safety. 
The APS model was developed in 1986 based on grade crossing and accident data from the 
preceding 20 years. 
Additional modeling efforts intended to support and supplement the APS were conducted more 
recently by the Volpe National Transportation System Center (Volpe) and FRA. Volpe 
developed a High-Speed Rail (HSR) Accident Severity Model in 20003 to predict accidents and 
their severity by types of traffic on the highway and railroad. In 2005 the FRA published the 
final Train Horn Rule (49 CFR 222), which specified “supplementary safety measures” and their 
impacts on risk reduction. Such measures include: four-quad gates, median barriers, mountable 
curbs, and new technologies like photo enforcement. 
Among its enhancements for assessing grade crossing risk, FRA’s GradeDec.Net online tool 
gives users access to the HSR Accident Severity Model, and complements the APS model with 
the supplementary safety measure impacts from the Train Horn Rule. 
While these improvements are notable, a new replacement model for the APS is still required to 
ensure that U.S. DOT, State Departments of Transportation, and local governments efficiently utilize 
resources for reducing risk at grade crossings. 

1.1.2 Grade Crossing Accident Trends and the APS 
Grade crossing accidents declined sharply in the 25 years following APS development (from 
about 3,000 per year to about 2,000 per year). This reduction was due to a number of factors, 
indicating the relationship between grade crossing characteristics and accidents has likely 
shifted. 
FRA periodically updates the APS normalizing constants4 so that the national aggregate number 
of predicted accidents equals the actual number of accidents in the most recently ended calendar 
year. While the normalizing constants are applied uniformly within each warning device type 

2 Farr (1987) describes the APS. 
3 See Mironer, et al. (2000) at https://rosap.ntl.bts.gov/view/dot/8433. 
4 See Farr (1987), 3-7. 

https://rosap.ntl.bts.gov/view/dot/8433
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group, they do not account for the many factors influencing accident risk that have changed in 
recent years, namely: rail and highway environments, technology, traffic trends, etc. 
On the rail side, freight trains are longer, which causes longer block times at crossings. The 
expansion of intermodal traffic and the growth of intermodal facilities have led to choke points 
on highways in the vicinity of some major intermodal facilities. Longer waits at crossings 
contribute to “incentivizing” risky behavior (e.g., driving around lowered gates) by some 
highway users. In recent years there has been an uptick in grade crossing accidents. 
One would also expect changes in highway user behavior to impact safety at crossings. Trends 
toward larger vehicles (e.g., SUVs and light trucks replacing smaller cars) result in slower queue 
dispersal at crossings. Changes in traffic mix, increases in number of delivery vehicles, and the 
rise of ride-sharing – would all contribute to changes in crossing safety and its prediction based 
on characteristics of grade crossings and traffic volumes by mode. 
Moreover, since 1986, new technologies and traffic management measures have been deployed at 
many crossings, including: constant warning time (CWT) devices, signal pre-emption, and queue 
cutters. 

1.1.3 APS Limitations 
State and local government agencies have alerted the FRA Office of Research and Development 
that the APS produces very similar results for a majority of crossings within their jurisdictions, 
making it difficult to identify the highest-risk highway-rail grade crossings. Limited variance 
among APS-generated assessments is attributed to the predominance of crossings with no 
accidents in the preceding 5 years, and similar-site specific characteristics (like traffic counts and 
warning devices). New consensus methods of analysis (see the Accident Prediction Model 
section) directly address these issues. 
The APS includes three separate models for accident prediction – one for each of the three major 
grade crossing warning device type categories: passive (signage), flashing lights, and gates. 
There is no clear rationale for splitting accident prediction into three separate models, as opposed 
to treating the warning device type as a grade crossing characteristic in a single model for all 
crossings. 
Moreover, the separate models can generate inconsistent outcomes. For example, for some 
combinations of grade crossing characteristics, the APS calculates higher risk for crossings with 
the same characteristics except for a more protective warning device. It is easy to see how an 
analysis of grade crossing risk in a corridor or region could yield results with measures of 
relative risk between similar crossings with different warning device types that are highly 
suspect. 
Similarly, if seeking to estimate the effect of a warning device upgrade (say, from lights to 
gates), one could not use the models, segregated by device type category, to estimate risk 
reduction. The APS resource allocation procedure is to work around this issue by applying a 
crash modification factor (CMF).5 A CMF reduces the risk of the unimproved grade crossing by 
a fixed percentage. The workaround uses the CMF-reduced risk result in place of the APS result 
for the assessed risk of the improved crossing. The CMF method, while accepted practice, has 

5 Farr (1987), p. 11, calls these “effectiveness factors.” The term crash modification factor was adopted later. 
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been critiqued in the safety research literature.6 Regardless, the model should enable 
recalculation of the risk at the crossing corresponding to a warning device upgrade without 
relying on external methods. 
Another limitation of the APS model is that it provides no method to determine if risk measures 
at different crossings differ with statistical significance7 (e.g., two crossings with predicted 
annual accidents of, say, 0.21 and 0.23, respectively). If the difference in measured risk at two 
crossings is not statistically significant, there is no evidentiary basis for treating these crossings 
differently (e.g., applying an improvement to one of the crossings and not the other). The APS is 
essentially a scoring model where a statistical model is needed (see the example in Appendix B, 
Application of the New Model). 

1.1.4 Purpose of a New Model 
The overarching purpose of a new grade crossing safety model, an alternative to the APS, is to 
effect evidence-based safety management of grade crossings. The new grade crossing safety 
model should enable users to: 
1. Estimate safety and risk at grade crossings.
2. Estimate safety gains due to prospective improvements to crossings and support the

estimation of benefits from these gains.
3. Screen for high risk crossings and develop strategies and programs for safety improvements.
4. Account for statistical significance of differences in measured risk at crossings.
5. Estimate changes in safety at crossings due to changes in some variable value (e.g., growth

of AADT over time).

1.1.5 Policy Perspective of Grade Crossing Safety 
Grade crossings are “safety hotspots.” Fatalities in grade crossing accidents numbered 2608 in 
2018. While this may seem small in comparison to total U.S. highway fatalities (36,5609 in 
2018), fatalities and accidents at grade crossings are highly significant when considering the 
amount of highway travel that actually traverses grade crossings. 
Transportation agencies at all levels recognize that grade crossings are a significant source of 
risk and have been singled-out for special programs and safety countermeasures over the years. 
Accident risk at grade crossings is eliminated by closure or grade separation (closure, however, 
could possibly re-direct the risk from the closed crossing to other grade crossings). Additional 
measures like warning device upgrades, supplementary safety measures, and other engineering 
solutions have been shown to significantly reduce risk at grade crossings. 

6 See Hauer (2015), 186-188. 
7 This is similar to asking whether the risk measures of the two crossings are within the “margin of error.” 
8 https://safetydata.fra.dot.gov/OfficeofSafety/publicsite/Query/AccidentByRegionStateCounty.aspx 
9 https://cdan.nhtsa.gov/tsftables/National%20Statistics.pdf 
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There is a definitional relationship between risk and exposure. Exposure is a measure of 
opportunities for accidents to occur. The exposure10 metric for grade crossing usage is based on 
coincident arrivals of trains and highway vehicles at a crossing. It is not surprising to find that 
more heavily trafficked grade crossings, in general, have more protection from warning devices. 
The analysis in this report examines the relationship between accidents, exposure, and the 
principal warning device type categories.11  
The current U.S. DOT APS model has three accident prediction models, one for each warning 
device type category. For some ranges of input variables, APS calculates higher risk than with a 
more protective warning device type. (For example, with exposure of 1,000 and maximum 
timetable speed of 79 mph, the APS predicts more accidents at a gated crossing than at a lights-
only crossing.) This should give pause when considering APS predictions in a region or corridor. 
If two crossings have similar data with the exception of the warning device type, do we have 
confidence in the relative measure of their predicted accidents? Moreover, would proposed 
improvements for the corridor or region be allocated to their most effective use? The new model, 
based on modern techniques, replaces the three APS models with a single prediction model that 
incorporates warning device type category as a variable. Its predictions consistently preserve 
relative magnitudes of risk with different warning devices. 
Moreover, the APS resource allocation procedure relies on “effectiveness values”12 to account 
for risk reduction with a warning device upgrade (in recent years, these have been renamed 
“crash modification factors”). The road safety literature indicates that such mixed methods can 
result in methodological inconsistencies.13 
The assessment of grade crossing risk and the planning and budgeting for improvements are the 
sole responsibility of State and local authorities.14  The public authority assessing grade crossing 
risk relies on a model like the APS15 and bases management decisions for improvements, 
accordingly. The quality of those decisions will rely to a great extent on the quality of the risk 
assessment. 
The new model developed here as an alternative to APS seeks to address the issue of risk 
assessment quality by: 

• Relying upon current data, appropriate data analysis, and statistical methods

• Examining the relationship between exposure, warning device type, and other key grade
crossing characteristics

10 Exposure, or exposure to risk, is defined for grade crossings as average annual daily trains times average annual 
daily highway vehicles at a crossing. This definition is imperfect because accident risk should consider the 
correlation of vehicle arrivals by mode, accounting for both seasonality and diurnal distributions of traffic. 
11 The APS is defined in Farr (1987). Warning device type categories are: passive, lights, and gates. 
12 Farr (1987) p. 11, Table 3 “Effectiveness Values for Crossing Warning Devices.” 
13 See, for example Hauer (2015), Appendix L. 
14 Upon request, the owning railroad grants the public authority easement to build and maintain the road that 
traverses its track. The railroad bears full responsibility for maintaining warning devices and any equipment within 
the grade crossing right-of-way. 
15 FRA maintains the APS and provides a web-based version at https://safetydata.fra.dot.gov/webaps/. 

https://safetydata.fra.dot.gov/webaps/
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• Properly accounting for accident history

• Presenting a fully transparent model that allows for: single crossing estimates, estimates
of risk for groups of crossings, and determining whether differences in grade crossing
risk warrant similar or different treatment based on statistical measures.

1.2 Objectives 
The objectives of the research are as follows: 

• Develop a new model to serve as an alternative to the current U.S. DOT APS.

• Document the full development process of the model.

• Demonstrate that the model satisfies statistical criteria and is practical for practitioner
use.

• Validate the new model by comparing its performance against the APS and actual
accident data.

1.3 Overall Approach 

1.3.1 About Safety Performance Functions 
Since the late 1990s, there has been substantial progress in consensus methods for developing 
safety prediction models. These new approaches are presented in AASHTO’s Highway Safety 
Manual.16 In the current mode of thinking, the APS is a type of “safety performance function” 
(SPF), which yields a metric indicating the safety of a grade crossing. That metric can be either 
the annual expected number of accidents at a crossing or expected accidents by severity type 
(e.g., fatal, injury, property damage only – the APS accident severity types). 
The SPF is derived in a multi-stage process. The key sources of data for this process are: 1) a set 
of traits that characterize the facilities under consideration and 2) the 5-year accident history at 
the grade crossings. The database of traits is the U.S. DOT Grade Crossing Inventory System 
(GCIS). The database of U.S. DOT Form 57 (a form must be submitted for each highway-rail 
crossing accident) captures the grade crossing accident history. 
The SPF development involves: First, screen the data in the inventory to eliminate irrelevant or 
erroneous data. Second, discover via analysis the functional forms that best describe the data, 
and offer hints regarding possible relationships between accidents and traits. Third, derive the 
safety model from a suitable statistical estimation procedure. Fourth, adjust the number of 
predicted accidents at each crossing to account for the accident history using empirical Bayes 
(EB) estimators, which derive from another statistical procedure. 
This research covers the development of a new model, namely: the derivation of the SPF, its 
validation, and the process for estimating safety risk at grade crossings as an alternative to the 
APS. 

16 AASHTO (2010). 
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1.3.2 Information the SPF Provides 
The model, or SPF, provides estimates of four elements for a given set, or population, of grade 
crossings: 

1. E[μi], the expected or predicted number of accidents at crossing i 
2. σ[μi], the standard deviation of the predicted number of accidents at crossing i 
3. E{μ}, the mean of all the μs in a population (all crossings or a subset of crossings) 
4. σ{μ}, the standard deviation of all the μs in a population 

The following table shows situations for which the above estimates are needed: 

Table 1-1. Estimates Required for Different Types of Analysis Focus 
Analysis Focus 

Average safety E{μ} for subsets of grade 
crossings 

Safety (μ, σ) of specific grade crossings 

What is normal for grade crossings with given 
traits? 

Is the crossing “unsafe” or has unusually 
high risk? 

How do the E{μ} vary across subsets of crossings 
(e.g., by states or region, by device type)? 

Can we rank a collection of crossings and 
divide into high- and low-risk groupings? 

What would be the aggregate effect of making an 
improvement over a population of crossings (e.g., 
eliminate humped crossings)? 

What might be the safety effect and 
benefit of applying some improvement to 
a crossing? 

Need E{μ} and σ{μ} to answer the questions 
 

Need E[μ] and σ[μ] to answer the 
questions 

Source: based on Hauer (2015). 

The estimate of the standard deviation of the safety metric is needed in the case of specific 
crossings in order to determine whether:  

• Predicted accidents are different from zero with statistical significance.17 

• Safety measures of two crossings are statistically different from one another (i.e., if 
crossings A and B, say, have predicted accidents of 0.21 and 0.23, respectively, should 
they be treated differently or with different priority on the basis of the evidentiary data). 

To achieve an SPF, data about grade crossing characteristics, or traits, need to be cast as 
statistical models that explain the accident counts at crossings. In developing a safety model for 
crossings, there are two clues that the model needs to exploit:  

• The first clue is the characteristics (or traits) of the grade crossing. These traits contain 
information regarding the common features of grade crossings that contribute to 
accidents. 

• The second clue available for developing a safety model is the accident history. Accident 
history captures the unique qualities of each crossing contributing to safety and risk. 

                                                   
17 “Statistical significance” means that a relationship between two or more variables is caused by something besides 
chance. If the ratio of a crossing’s mean predicted accidents to its standard deviation exceeds a threshold value (e.g., 
1.65) then the predicted accidents is said to be “statistically significant at the (e.g.) 90% level.” This is equivalent to 
saying that there is a 10 percent probability of a Type I error (falsely rejecting the null hypothesis). 
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As a general approach, the safety model will account for both clues by first predicting accidents 
based on characteristics, and then adjust the outcome to account for accident history. 
The principles outlined in this section guided the development of the new model for grade 
crossing accident prediction and severity. 

1.4 Scope 
The analysis of the accident and GCIS data and the development of the new model focused on 
methods described in AASHTO’s Highway Safety Manual.18 The approach the project researchers 
followed sought to: 

• Make best use of their understanding of historical trends, the policy environment, and
practice in using the APS.

• Maximize the number of grade crossings included in the regression analysis.
Researchers did not conduct an exhaustive search of alternative approaches, such as: artificial 
intelligence (AI) methods, like “k nearest neighbors” (KNN); methods for “slicing and dicing” 
the data into smaller subsets; non-multiplicative (i.e., non-linear in logs) functional forms, etc. 
The research team believes that alternative approaches may have merits, but also drawbacks in 
comparison with the chosen approach. 
The focus of the research was on developing the model. The team recognizes that additional 
work is needed to further operationalize the model and provide guidance for use of the new 
model by practitioners.19 

1.5 Organization of the Report 
Section 2 is a preliminary data review. The section discusses well-established relationships (e.g., 
exposure drives risk, upgrading the warning device type at a crossing reduces risk). It concludes 
with a generic functional form based on the principal drivers of risk (exposure and warning 
device type) and accommodates additional variables as warranted by data analysis and the 
estimation process. 
Section 3 describes the data selection and data analysis. 
Section 4, the Accident Prediction Model, presents the functional form of the new model 
accident prediction, its estimation using the zero-inflated negative binomial (ZINB) regression 
method, and the application of the EB method. The section concludes with the new model 
equations for accident prediction. 
Section 5, the Accident Severity Model, presents the accident severity component of the new 
model. It describes the multinomial logistic (MNL) regression method used to develop the 
model.  

18 18 AASHTO (2010). 
19 For example, guidance should provide rules for treating missing data or replacing data from the GCIS with more 
current or more relevant estimates. 
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Section 6, Validation, presents validations of the accident prediction and severity prediction of 
the new model. 
Section 7 is the Conclusion.
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2. Preliminary Data Review

In this section, the research team identifies known relationships or well-supported theories 
relating accident risk at grade crossings to grade crossing traits. 
The team explored whether a single model could internalize warning device types and thus avoid 
having separate models for each class of device. A unified model would ensure that a device 
upgrade will be accompanied by accurate risk reduction measurements of accidents at grade 
crossings. This would eliminate the need for employing a “crash modification factor” (CMF)20 
approach to estimate the effect of a device upgrade. 
It is intuitively clear, and supported by research21, that upgrading a warning device type to one 
that provides a higher level of protection reduces the accident risk at a crossing (given that all 
other factors remain the same). That said, it does not follow that a device upgrade is cost-
beneficial or even a cost-effective way to improve safety at a crossing. 
There are three warning device type categories: passive, lights, and gates. Within each category, 
there are several warning device types with somewhat differing risk characteristics than the main 
category. These will be discussed below. 
It is also well understood that risk increases with exposure (although not at a uniform rate for 
every level of exposure). As one would expect, for a given crossing the greater the exposure and 
risk, the more likely it is that a local authority will (in coordination with the owning railroad) 
upgrade the warning device. Consequently, nearly all very low-exposure crossings have passive 
devices and nearly all very high-exposure crossings have gates. The researchers expected to 
observe a high correlation between device type and exposure at crossings. 
This section examines the relationship between accidents, exposure, and device types and 
concludes with a general functional form for the accident prediction model. 

2.1 Risk by Warning Device Types 
Table 2-1 shows the warning device codes by super-category (passive, lights, gates) and their 
meaning in GCIS.   

20 The CMF approach, often based on before-and-after crash studies, provides a factor associated with risk reduction 
for a particular safety countermeasure. For example, a CMF of 0.12 means that predicted accidents after applying 
the safety countermeasure will equal predicted accidents before such application times one minus the CMF, i.e., 
Aafter=Abefore*(1-CMF).  
21 Elvik, R. and Vaa, T. (2004). 
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Table 2-1. Warning Device Type Codes and Descriptions 

Code Description of Warning Device Type 

PASSIVE 

1 No sign or signal 

2 Other signs or signals 

3 Stop signs 

4 Crossbucks 

LIGHTS 

5 Non-train-activated special protection 

6 Highway traffic signals, wigwags or bells 

7 Flashing lights 

GATES 

8 Gates 

9 4-quadrant gates

Figure 2-1 shows the filtered crossings in the inventory grouped by device type category. The 
bars indicate the number of crossings with the specified device type having the number of 
accidents in the period shown on the x-axis. Note that the y-axis uses a log scale. 
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Figure 2-1. Accidents by Warning Device Type 

2.1.1 Aggregate Risk Adjusted for Exposure by Warning Device Type 
To support an accident prediction model with exposure and warning device type as core 
variables, the research team examined aggregate risk at crossings by warning device type and 
accident rates (i.e., accident count divided by exposure). 
Accident per exposure is the most common way to express accident rates on a facility.22 Note 
that the accidents are for 5 years. The exposure data in GCIS23 are for a typical day. Exposure for 
the 5-year period is given by: 

22 For example, “Highway Statistics 2018, Federal Highway Administration” gives fatality rates in terms of 
“fatalities per 100 million VMT (vehicle-miles traveled).” VMT is the measure of exposure for general highway use. 
23 As a caveat, note that the GCIS data are reported by State and local agencies with varying data quality. Moreover, 
some data fields are not maintained as vigorously as others. For example, data for warning device type are, for the 
most part, current and accurate. Data for the railroad and highway environments at crossings (e.g., AADT, train 
traffic) tend to be less current and may be out-of-date. 
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Equation 1. Exposure in the Analysis Period (2014–2018) 

where: 

xp Exposure in 5-year period 
aadt Average annual daily traffic 
dt Daily trains at the crossing 
300 Number of annual traffic days 
5 Number of years 

Figure 2-2 shows the crossing risk divided by exposure for each device type category. The data 
points (colored purple and orange) show the risk per exposure at each crossing grouped by 
warning device type. The risk values are shown at the data points in bold and by the left y-axis. 
The bars are the number of crossings in each group and their values are represented by the right 
y-axis. Note also the number below the risk value, which is the count of accidents in the period
for each grouping of crossings.
Focusing for now on the orange data points, these represent the largest groupings in each of the 
three super-categories: passive, lights, and gates. A lights crossing has 73 percent less risk per 
exposure in comparison to the passive crossing. Compared to a lights crossing, the gated 
crossings have 63 percent less risk per exposure. 
The orange points were singled-out because they represent: 1) the main grouping in the super-
category, and 2) in each, there is a substantial number of crossings and accidents. The “Stop 
Signs” category is also sizable and its risk per exposure is not that different than the risk per 
exposure of the crossbucks grouping (1.122 vs 1.479; in other words, crossbucks are about 75 
percent as risky per exposure as stop signs). Moreover, there are over 10,000 crossings in the 
“Stop Signs” category and initial inspection indicates that it will likely be advantageous to merge 
the two categories into the “passive” category. 
The other warning device type categories within each super-category are somewhat small 
samples of crossings and accidents with widely different risk characteristics than the main 
grouping. The crossings with codes for these groupings (1, 2, 5, 6, 9) will be omitted from the 
analysis. (For accident prediction of these device types, we would use the super-category and 
then apply a CFM to scale the risk given the best available information). 
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Figure 2-2. Risk per Exposure (Accident Rate) by Warning Device Type 

2.1.2 A Generic Functional Form for Accident Prediction 
The following generic functional form follows from the above discussion. 

Equation 2. Generic Functional Form for Accident Prediction 

NOTES TO FIGURE 2-2 

The bars in the chart are the number of grade crossings (shown on the right y-axis) for each 
warning device type (shown on the x-axis). In the x-axis labels, the letters in parentheses indicate 
the principal warning device type category (P – passive, L – lights, G – gates). 

The square markers represent the average number of accidents per exposure at crossings with the 
warning device type (shown on the left y-axis).  Markers are colored orange for the warning 
device type with the largest number of grade crossings in the warning device type category. 

Upper number: Accident rate 
Lower number: Accidents in sample 
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where: 
xp Exposure (= daily trains * aadt) 
x Other variables (vector) 
D2 1 if crossing warning device is lights, 0 otherwise 
D3 1 if crossing warning device is gates, 0 otherwise 
Note: If D2 = D3 = 0 then the warning device at the crossing is passive 

From an understanding of the impacts of exposure and warning device types on accident risk, the 
parameter estimates of coefficients from a statistical estimation process would yield the 
following: 

that is, a crossing with lights warning device has less risk than a crossing with passive device, 
and a gates crossing has less risk than a lights crossing. (The “hat” diacritical indicates an 
estimated coefficient of the model.) 
The following chart shows the relative risk of an example grade crossing for different warning 
device types and at different levels of exposure. Note that for very low levels of exposure all 
crossings have passive warning devices, and at very high levels of exposure grade crossings are 
gated. Grade crossings with lights fall in the middle range of exposure. 

Figure 2-3. Relative Risk Levels by Warning Device24 

24 The elasticity of risk with respect to exposure (set to a value of 0.35) is drawn from the current APS and 
preliminary data analysis. Elasticity is the percent change in one variable (e.g., accident risk) when another variable 
(e.g., exposure) varies by 1 percent. 

0 > �̂�𝛽2 > �̂�𝛽3 
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The following sections show how this general form, together with additional model variables, 
will combine in the new accident prediction model.
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3. Data Selection and Analysis

The section describes the process of data selection for the development of the new model that 
will serve as an alternative to APS. The goal was to produce a model that defines an SPF for 
grade crossings. The first focus was on a model predicting accident occurrence, and later in this 
document address accident severity prediction given an accident. 
Following data analysis and selection of traits for inclusion in the new model, additional filters 
may be applied to the data to account for missing/erroneous values for the new model traits. An 
additional consideration that accompanied the data analysis was to retain as many grade 
crossings in the dataset for model estimation as practical. 
The research team sought variables that were likely to support a model. Since the researchers 
proceeded from the assumption that key drivers are represented by exposure and warning device 
type, they further assumed that f(x) from Equation 2 in the previous section was linear in its 
variables (which were the explanatory variables the team sought to identify for inclusion in the 
model). 

3.1 Data Sources 
The two sources of data for the development of the new model are: 

• Grade Crossing Inventory System (GCIS) data. The reference document for the data is
“FRA Instructions for Electronic Submission of U.S. DOT Crossing Inventory Data,
Grade Crossing Inventory System (GCIS), v2.9.0.0, Released: 7/2/2019.” Grade crossing
data updates are electronic submissions of Form FRA F 6180.71 by railroads, transit
agencies, and States. GCIS uses Open Data (OData), a RESTful (REpresentational state
transfer), for data downloads. OData downloads provide a single table that includes all
five parts of the inventory – including header information. The data contain one row for
each grade crossing in the inventory representing the most current data per the submitting
agency’s most recent submission.

• The FRA safety data website provides downloading accident data by year. The accident
data source is Form 6180.57, which railroads submit to FRA following each grade
crossing accident. The Form 6180.57 data download as a single table (in Excel or Access
formats) with each accident represented as a single row in the table. For the analysis,
researchers looked at accidents in the 5-year period 2014–2018.

We downloaded and inserted the data into SQL server database tables. The tables were merged 
into a single table with an additional column for total accidents in the period (2014–2018).  

3.2 Data Selection 
This section describes the process for filtering the data so as to include those crossings that are 
the focus of the analysis, while eliminating from analysis those crossings that are not of interest 
(e.g., closed or grade separated). Researchers also filtered out data that had missing or erroneous 
values for several key analysis variables. Table 3-1 summarizes the data filters along with the 
number of crossings, accidents, and number of crossings with accidents remaining after applying 
each filter. The team sought to keep the number of grade crossings in the selection as large as 
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possible so that its practical application in prediction would not require an extensive set of rules 
to account for missing or erroneous data. For example, if a variable seemed promising for 
inclusion, yet only, say, 30 percent of grade crossings had data for the variable – researchers 
opted to exclude it. 

3.2.1 Public Crossings Only 
GCIS identifies public crossings as those having a value of 3 in the TypeXing field. For private 
crossings, the roadway is maintained by a private individual or entity. There is no legal 
obligation for the road maintainers at private crossings to submit data to GCIS. Each year, on 
average, 14 to 15 percent of accidents occur at private crossings. However, the data of crossing 
characteristics at private crossings are extremely sparse. Consequently, these have been excluded 
from the analysis.  

3.2.2 At-Grade Crossings Only 
Crossings that are grade separated pose no risk of collision between trains and highway vehicles, 
hence these crossings are excluded. The field PosXing with value set to 1 identifies a crossing at-
grade. 

3.2.3 Closed Crossings 
GCIS identifies closed crossings when the ReasonID (reason for submitting a data update) field 
is set to value 16. Crossings with ReasonID = 16 have been eliminated from the analysis. Note 
that it may be the case that a closed crossing was subsequently updated for a different reason, in 
which case there would be no indicator in GCIS that the crossing was closed. 

3.2.4 Missing or Erroneous Values for AADT 
Without a value for average annual daily traffic (AADT), risk exposure at the crossing could not 
be evaluated (defined as AADT times the number of daily trains). Note that AADT, like other 
variables in GCIS, may be out-of-date. 

3.2.5 Missing or Erroneous Values for Number of Daily Trains 
As with AADT, crossings that have missing or erroneous data for total number of daily trains 
have been excluded. 

3.2.6 Missing or Erroneous Values for Highway Lanes and Tracks 
These two variables are the key descriptors of infrastructure at crossings and may be important 
predictors of accidents. 
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Table 3-1. Summary of Data Selection 

Filter Criterion 
(with previous 

filters) 

Number of 
Crossings 

Remaining after 
Filter 

Total Number of 
Accidents 2014-2018 

at Remaining 
Crossings 

Of Remaining 
Crossings, Number 

with Accidents 

None 429,463 10,675 8,814 

Public only 266,304 9,147 7,538 

At-grade only 220,289 9,110 7,503 

Exclude closed 130,107 8,986 7,390 

Exclude 0, missing, 
erroneous AADT 

128,378 8,922 7,334 

Exclude 0, missing, 
erroneous highway 
lanes 

127,755 8,895 7,308 

Exclude 0, missing, 
erroneous daily trains 

105,383 8,467 6,944 

Exclude 0, missing, 
erroneous total tracks 

105,362 8,465 6,942 

3.3 Candidate Variables 
Variables in the GCIS that were considered candidates for explaining accidents are shown in the 
table below. Researchers eliminated from the list variables that are already accounted for in the 
exposure variable (i.e., trains and AADT) and those that are likely highly correlated with these 
variables. Warning devices were also excluded, as the team included these by default in the new 
model. The variables are divided into two groups: discrete and continuous. 
The analysis assesses whether a variable is a likely candidate for inclusion in the model. 

Table 3-2 Candidate Variables for Inclusion in the New Model 

Discrete Continuous 

Approach angle Percent truck 

Development type Passenger train count 

Main track? Hwy speed 

Traffic lane type Max timetable speed 

Paved/unpaved 

Crossing surface type 

Urban/rural 
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Discrete Continuous 

Highway functional class 

Advanced warning 

3.3.1 Discrete Explanatory Variables 
The discrete variables are essentially category variables that indicate a crossing belongs to a 
particular category among two or more possibilities. The variables are represented in the data as 
integer values. However, there is no ordered relationship among the categories represented by 
the integers. 
The method for evaluating the discrete variables for inclusion in the model was to consider 
crossings with 5-year accident history greater than 0. Researchers then examined a boxplot chart 
of accidents normalized for exposure and warning device types25, grouped by the variable by its 
different levels. If the boxplot indicated significant variance across groupings (i.e., the groupings 
displayed different medians and other measures indicating variance), then the variable would be 
considered for inclusion in estimation. If the boxplot displayed no such variance, the team 
concluded that the variable did not have a strong impact on accident prediction and would be 
excluded. 
As an example, the following chart shows the boxplot for the variable of grade crossing surface 
type. Researchers aggregated the two categories of “Concrete” and “Concrete and Rubber.” This 
variable displays variance across its categories, so it was flagged for inclusion in the new model. 

25 “Accidents normalized for exposure and warning device types” means accidents in 5-year history divided by the 
product of exposure and a risk factor for the warning device type. The risk factors used were: passive = 1.0, lights = 
0.3 and gates = 0.1. These values are based on the analysis of the previous Section. 
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Figure 3-1. Boxplot of Normalized Crossing Accidents by Grade Crossing Surface Type 
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The following chart shows the boxplot for the variable of grade crossing angle. There is very 
little variance across the groupings. Consequently, this variable was excluded from the model. 

Figure 3-2. Boxplot of Normalized Crossing Accidents by Grade Crossing Angle 
Following the review of the discrete variables, it was found that the following variables 
warranted inclusion in the model: 1) Crossing surface type, and 2) RuralUrban. 

3.3.2 Continuous Explanatory Variables 
The grade crossings characteristics that are continuous variables were ordered (i.e., all variable 
values are comparable, and if values are different, then one is greater than the other). Each can 
assume a range of values, not necessarily integers. However, data specifications typically restrict 
the values to integers (e.g., maximum timetable speeds can assume values from 1 to 99). 
The method for evaluating the continuous variables for inclusion in the model was to consider 
crossings with 5-year accident history greater than 0. Researchers then examined a boxplot chart of 
accidents normalized for exposure and warning device types, grouped by the variable for each of its 
10 deciles. If the boxplot indicated a good distribution of the variable, and an observed functional 
relationship across deciles, then the variable would be considered for inclusion in estimation, 
otherwise it was not.  

The following chart shows the boxplot for the variable of maximum timetable speed. 
There was a clear increasing trend for increasing decile. Consequently, this variable was included in 
the model. 
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Figure 3-3. Boxplot of Normalized Crossing Accidents by Maximum Timetable Speed Deciles 

The following chart shows the boxplot for the variable of percent truck of highway traffic.  
There was no clear relationship that changes over deciles of the variable. Consequently, this 
variable was excluded from the model. 

Figure 3-4. Boxplot of Normalized Crossing Accidents by Percent Truck Deciles 
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Following the identification of variables for inclusion in the model estimation, researchers 
further filtered the remaining crossings to exclude from the regression analysis crossings that 
have a) non-standard warning device codes or b) missing or erroneous values for included 
explanatory variables. 

Table 3-3. Final Data Selection 

Filter Criterion (with 
previous filters) 

Number of 
Crossings 

Remaining after 
Filter 

Total Number of 
Accidents 2014-2018 at 
Remaining Crossings 

Of Remaining 
Crossings, 

Number with 
Accidents 

Exclude non-standard 
warning device codes 
(1, 2, 5, 6, 9). See 
Section 2.2.1  

102,054 8,204 6,743 

RuralUrban missing or 
erroneous values 

101,838 8,187 6,730 

XSurfaceIds2 missing 
or erroneous values 

94,033 7,822 6,409 

MaxTtSpd missing or 
erroneous values 

94,029 7,822 6,409 
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4. Accident Prediction Model

This section presents the selected accident prediction model, its regression with the ZINB 
estimation procedure, and the EB adjustment of the ZINB-predicted values. 
ZINB is one type of zero-inflated models. It is used for count variables (e.g., accidents) that 
exhibit excess zeroes. “Excess zeroes” means that of the many crossings with no accidents in the 
preceding 5 years, some of those were crossings effectively had no risk of an accident. 
The ZINB model assumes that: 

• Each crossing has some non-zero probability of being a no-risk crossing.

• Each crossing has an expected number of annual accidents.

• Accident counts for the population of crossings conform to a negative binomial
distribution (the standard deviation of accidents for the population is greater than the
mean, indicating overdispersion).

ZINB has been adopted in numerous accident studies and is well-suited for the analysis of grade 
crossing accidents. 
The EB method adjusts the estimate of the expected number of accidents so as to account for 
history, and correct for “regression to the mean”26 bias. The equation relies on the ZINB 
regression outputs to estimate a weighting factor. The EB-adjusted estimate is a linear 
combination of the predicted accidents (from ZINB) and the actual count of accidents. If the 
accident history indicates no accidents, then the EB adjustment will adjust the expected value of 
accidents downwards toward zero. For crossings with non-zero accident history, EB will adjust 
the expected value (usually upward) so that it is closer to the actual count. 
R software was used in the model estimation. 

4.1 The Accident Prediction Model 
Based on the analysis described in the previous sections, the selected accident prediction mode is 
shown below. The model has two components: 1) a count model and 2) a zero-inflated model. 

Equation 3. The ZINB Count Model 

26 “Regression to the mean” basically means that if a variable is extreme the first time you measure it, it will be 
closer to the average the next time you measure it. For example, if we randomly selected a crossing that had several 
accidents in its 5-year history (that is, a very high risk grade crossing), the next random selection would be a 
crossing whose risk was much closer to the mean for all grade crossings. 
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Equation 4. The ZINB Zero-Inflated Model 

Equation 5. The ZINB Combined Model 

where: 

NCountPredicted Predicted accidents of count model (data for left-hand side of regression are 
counts of accidents at crossings in 5-year period 2014–2018) 

PInflatedZero The probability that the grade crossing is an “excess zero” 
NPredicted Predicted accidents after accounting for excess zeroes 
lExpo1 Exposure, equal to average annual daily traffic times daily trains 
D2 If warning device type is lights =1, 0 otherwise 
D3 If warning device type is gates =1, 0 otherwise 

(note: if both D2 and D3 are zero, then warning device type is passive) 
RurUrb If Rural = 0, if Urban = 1 
XSurfID2s Timber = 1, Asphalt = 2, Asphalt and Timber OR Concrete OR Rubber = 3, 

Concrete and Rubber = 4 
lMaxTtSpd1 Maximum timetable speed (integer value between 0 and 99) 
lAadt1 Average annual daily traffic 
lTotalTrains1 Total number of daily trains 

1These variables have been transformed as follows: lx = log(1+αx), where x is the original 
variable and α is a factor. The factor α was selected so that for the median value of x, ln(1+αx) = 
ln(x) 

4.2 ZINB Regression 
The ZINB regression model has two components: the count model and the zero-inflated model. 
The count model is for predicted accidents before considering the probability of excess zeroes. 
The zero-inflation model is for estimating the probability of an inflated zero. (An “inflated zero” 
is a zero accident count that does not derive from a grade crossing’s traits; rather, it is zero 
because the crossing accident risk is effectively 0.) Note that the explanatory variable for the 
zero-inflated model is the total number of trains; that is, the fewer trains at a grade crossing the 
higher the probability of an excess zero. 
The predicted (fitted) values of the model are given by f(x)*(1-g(s)), where f is the count model 
(operating on the vector of inputs x for each observation) and g is the zero-inflation model 
(operating on the vector of inputs s for each observation).  
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The following table shows the output for the zero-inflated negative binomial regression for the 
model in the previous section. 
The final set of crossing data used in the regression included 94,029 grade crossings with 7,822 
accidents at 6,409 crossings in 2014-2018 (see Table 3-3). 

Table 4-1. ZINB Regression Output 

Count model (negative binomial with log link) 
Variable Estimate Std. Error z-Value Pr(>|z|) 

(p-value) 
Confidence 

Level 
(Intercept) −8.3592 0.3208 −26.059 < 2e-16 > 99.99
lExpo 0.1902 0.0287 6.638 3.18e-11 > 99.99
D2 –0.2848 0.0481 −5.926 3.10e-09 > 99.99
D3 −0.8577 0.0409 −20.976 < 2e-16 > 99.99
RurUrb 0.3935 0.0316 12.444 < 2e-16 > 99.99
XSurfaceID2s 0.1318 0.0172 7.686 1.52e-14 > 99.99
lMaxTtSpd 0.6876 0.6876 22.702 < 2e-16 > 99.99
lAadt 0.1063 0.1063 3.511 0.000446 > 99.99
Log(θ) −0.2593 0.0887 −2.925 .003447 > 99.00

Zero-inflated model (negative binomial with log link) 
Variable Estimate Std. Error z-Value Pr(>|z|) 

(p-value) 
Confidence 

Level 
(Intercept) 1.1708 0.1900 6.1620 7.19e-10 > 99.99
lTotalTr −1.0109 0.0845 −11.9610 < 2e-16 > 99.99

Summary Statistics 
Log-Likelihood AIC 

–2.462e+04 49260.26 
Pearson Residuals 

Minimum 1st Quartile Median 3rd Quartile Maximum 
−0.6559 −0.2742 −0.2072 −0.1504 28.5137 

Notes to the regression output: 

• The values in the “Estimate” column are estimates of the model coefficients and
correspond to the βs from the count model equation (Equation 3) and γs from the zero-
inflation model equation (Equation 4).

• The column “Std. Error” shows the standard error of the coefficient to the left.

• The “z-value” column is the coefficient divided by the standard error (larger absolute
values of z indicate that the coefficient has greater statistical significance).

• “Pr(>|z|)” is the probability of exceeding the absolute value of the z-value (smaller values
indicate greater statistical significance).
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• The rightmost column shows the confidence level of the coefficient.

• θ27 is the inverse of the overdispersion parameter (α)  of the count model. The estimate of
θ is 0.7716 (and the imputed value of α=1.296). α was expected to be greater than 1.

• AIC is the Akaike Information Criteria for model quality given the dataset.

Key points to note from the regression output: 

• The coefficients for lExpo and lAadt have positive signs with expected magnitudes.

• The coefficients for D2 and D3 are negative (i.e., compared to passive devices, lights,
and gates reduce risk). The coefficient of D3 is about three times that of D2, which
conforms to expectations.

• The signs and magnitudes of other coefficients in the count model seem to correspond to
expectations.

• The coefficient of lTotalTr (i.e., total trains) in the zero-inflation model is negative, i.e.,
the probability of an excess zero decreases with the number of trains, as expected.

• All the coefficients have strong statistical significance.28

• The Akaike Information Criterion (AIC)29 is the least value for all tested models.

• The estimated mean and standard deviations for the population are:

o Mean: 0.08316

o Standard deviation: 0.21377

Figure 4-1 is a chart of the ZINB predicted values grouped by device type. The vertical lines on 
the chart indicate the average log of exposure for each grouping. The horizontal lines on the 
chart indicate the average predicted 5-year accidents for each grouping. The vertical line 
indicates the average log of exposure for each grouping. 

27 θ is the Greek letter “theta.” 
28 “Strong statistical significance” for an estimated coefficient means there is a very small probability of falsely 
rejecting the null hypothesis (i.e., the hypothesis that the coefficient is actually 0). 
29 From Wikipedia: The Akaike information criterion (AIC) is an estimator of out-of-sample prediction error and 
thereby relative quality of statistical models for a given set of data. For a statistical model, let k be the number of 
estimated parameters in the model. Let L be the maximum value of the likelihood function for the model. Then the 
AIC value of the model is the following: AIC = 2k - 2*ln(L) 
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Figure 4-1. ZINB Predicted Accidents by Warning Device Type 

4.3 Predicting Accidents from the Regression Outputs 
One can apply Equation 3, Equation 4, and Equation 5 above to calculate the predicted accident 
at a grade crossing (prior to applying the EB adjust described in the following section). The 
predicted accidents are the fitted values (i.e., Ŷ) of the model.  
The βs in the equations are the ZINB count model coefficient estimates and the γs are the ZINB 
zero-inflated model coefficients estimates. 

4.4 Empirical Bayes Prediction Adjustment 
The EB adjustment intends to correct the prediction for “regression to the mean” bias while 
adjusting the expected value to account for accident history. The process is described in Hauer.30 
For each grade crossing, the expected number of accidents is given by: 

Equation 6. Empirical Bayes Adjustment 

30 E. Hauer, The Art of Regression Modeling in Road Safety, Springer 2015. 
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where: 

NExpected The adjusted number of predicted accidents 
NPredicted The number of predicted accidents from the ZINB regression procedure 
NObserved The number of observed accidents (i.e., count of accidents at the grade crossing) 

and the weighting factor w is given by: 

Equation 7. EB Weighting Factor 

The variance of NPredicted is given by: 

Equation 8. Variance of Crossing's Predicted Number of Accidents 

where theta, as noted above, is the inverse of the overdispersion parameter α from the ZINB 
regression (θ is estimated to be 0.7716). 
Note that the underlying assumptions of the model indicate that the accident count data for a 
population of crossings is best described by the NB distribution. The overdispersion parameter 
describes the overdispersion of data relative to a Poisson distribution (where mean and variance 
are assumed equal). R software defines the variance of the count variable as μ+μ2/θ.31 Given this 
definition of variance, θ should be less than 1 and greater than 0. 
Figure 4-2 shows the predicted values grouped by device type, with this chart showing the 
predicted values including the EB adjustment. 
Compared to Figure 4-1, this chart shows the predicted values clustered around the values that 
represent the accident counts in each grade crossing’s 5-year accident history. 

31 Most other software packages (e.g., SAS, Stata, Limdep, SPSS, etc.) define the variance of the count variable as 
μ+ α · μ2. R’s θ is equivalent to 1/ α in the other packages. α is the overdispersion parameter of the negative 
binomial distribution, as defined in these other packages and most of the academic literature. 
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Figure 4-2. ZINB+EB Predicted Accidents by Warning Device Type
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5. Accident Severity Model

Grade crossing management in the U.S. considers three severity categories: fatal, injury and 
property damage only (PDO). A fatal accident is one with at least one fatality; an injury accident 
has at least one injury; and a PDO accident has no injuries or fatalities. 
The accident severity model seeks to determine the probabilities of prospective accidents at 
grade crossings belonging to each severity category. The process for predicting accident severity 
is one of allocating predicted accidents to each severity category. In the APS, there is no process 
to calibrate accident severity. Over time, accident severity has been fairly stable: fatal accidents 
are about 10 to 12 percent of the total, injury accidents about 27 percent, and PDO accidents 
about 61 percent. 
The remainder of the section describes the data, the logistic regression process used in the model 
estimation, and the model results. Some comparisons of the new model with the APS are 
discussed in the next section. 
R software was used in the model estimation. 

5.1 Description of the Data 
Federal law requires filing a Form 57 accident report for each grade crossing accident. The 
analysis used the Form 57 report database and GCIS. Researchers examined accidents in the 
period 2014–2019 (6 years) during which there were 12,983 accidents. They excluded from the 
model estimation process accidents from the following crossings: 

• Private crossings

• Crossings where traits were missing data for key explanatory variables.
There were 11,131 accidents at public crossings. Of these, 9,870 contained all the data for key 
explanatory variable, and these were included in the model estimation. Of the 9,870 accidents, 
1,355 (13.7 percent) were fatal, 2,768 (28.0 percent) were injury accidents, and 5,747 (58.2 
percent) were PDO. 
These accidents were matched with the grade crossing data from GCIS for each crossing where 
an accident occurred. 

5.2 The Accident Severity Model 
For the accident severity model, the researchers sought to estimate the probabilities that given an 
accident, the accident will be one of three types: fatal, injury or PDO. The explanatory variables 
for these estimates are grade crossing characteristics. The research sought, therefore, to model 
three variables: 

Equation 9. Probabilities to Estimate – Fatal 
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Equation 10. Probabilities to Estimate – Injury 

Equation 11. Probabilities to Estimate – PDO 

keeping in mind the following constraint: 

Equation 12. Constraint that Severity Probabilities Sum to 1 

One of the statistical methods that is well-suited for this type of problem is multinomial logistic 
regression, which is described in the following section. “Multinomial” refers to the fact that the 
left-hand side variable of the regression, accident type, can assume more than two values – in 
this case, three values (fatal, injury, PDO).  
The regression analysis requires the selection of a reference level for the accident type variable, 
and the team selected “fatal.” The regression estimates the probability of each of the other two 
values (injury, PDO) relative to the reference level (fatal). The fact that the three probabilities 
sum to 1 enables one to readily derive forecast equations (see the section below on forecast 
equations).  
Based on analysis of the data, the following is the new accident severity model, with “fatal” 
selected as the reference level of the left-hand side variable for the regression: 

Equation 13. Accident Severity Model – Injury Relative to Fatal 

Equation 14. Accident Severity Model – PDO Relative to Fatal 
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where: 

P(acctype = fatal | A) The probability of a fatal accident given an accident A 
P(acctype = injury | A) The probability of an injury accident given an accident A 
P(acctype = PDO | A) The probability of a PDO accident given an accident A 
lMaxTtSpd Natural log of the maximum (rail) timetable speed at the crossing 
lTrains Natural log of the total number of daily trains at the crossing 
RuralUrban 1 if crossing is in a rural (non-urban) environment, 0 if in urban 
D2 Has value 1 if warning device type is lights, 0 otherwise 

5.3 Multinomial Logistic Regression 
Multinomial logistic regression is used when the dependent variable in question is nominal 
(equivalently categorical, meaning that it falls into any one of a set of categories that cannot be 
ordered in any meaningful way) and for which there are more than two categories. In this study, 
researchers studied the probability that an accident will be one of three accident types. 
The problem is one of statistical classification. There is a dependent variable to be predicted that 
comes from one of a limited set of accident types. There is, as well, a set of independent 
variables (also known as features, explanators, traits, etc.), which are used to predict the 
dependent variable. Multinomial logistic regression is a particular solution to classification 
problems that uses a linear combination of the observed features and some problem-specific 
parameters to estimate the probability of each particular value of the dependent variable. 
The multinomial logistic regression output for the model described in the previous section is 
shown in Table 5-1. 
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Table 5-1. Accident Severity Multinomial Logistic Regression Output 
 (with “fatal” as the selected reference level) 

Part A – Given accident, probability of an injury accident (relative to a fatal accident) 
Variable Estimate Std. Error z-value Pr(|z|)>0 

(p-value) 
Confidence 

Level 
(Intercept) 5.2486 0.35511 14.7803 < 2e-16 > 99.99
lMaxTtSpd –0.9254 0.09794 –9.4488 < 2e-16 > 99.99
lTrains –0.2833 0.04246 –6.6716 2.53e-11 > 99.99
RuralUrban –0.2741 0.07289 –3.7604 0.00017 > 99.99
D2 0.4894 0.14104 3.4696 0.000521 > 99.99

Part B – Given accident, probability of a PDO accident (relative to a fatal accident) 
Variable Estimate Std. Error z-value Pr(|z|)>0 

(p-value) 
Confidence 

Level 
(Intercept) 6.9571 0.33902 20.5216 < 2e-16 > 99.99
lMaxTtSpd –1.2313 0.09291 –13.2528 < 2e-16 > 99.99
lTrains –0.2211 0.03941 –5.6113 2.01e-08 > 99.99
RuralUrban –0.2409 0.06719 –3.5846 0.000338 > 99.95
D2 0.3305 0.13577 2.4342 0.014925 > 98.50

Part C – Summary Statistics 
Residual Deviance AIC 

17986.35 18006.35 

Most coefficient estimates exhibit a high level of confidence (greater than 99.99 percent). The 
confidence levels for lTrains and RuralUrban are slightly less, but still high (high level of 
confidence coincides with a low probability of a Type I error32). The value for the AIC is the 
least among all of the variable combinations tested. 
Interpreting the coefficient estimates can be tricky. The estimates (except for the intercept and 
D2) are negative, indicating that the relative risk of injury or PDO to fatal decreases – which 
means that the risk of a fatal accident (the most severe) increases. 

5.4 Accident Severity Forecast Equations 
Equations 15–17 show the forecast equations for the accident severity model. 

Equation 15. Accident Severity Forecast Equations - Fatal 

32 A Type I error occurs when rejecting a true null hypothesis. 

Pr(𝑌𝑌𝑖𝑖 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 |𝐴𝐴) =  
1

1 + ∑ 𝑒𝑒𝜷𝜷𝒌𝒌∙𝑿𝑿𝒊𝒊3
𝑘𝑘=1
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Equation 16. Accident Severity Forecast Equations - Injury 

Equation 17. Accident Severity Forecast Equations - PDO 

Notes to equations: 

• The subscript k indicates accident type: fatal=1, injury=2, PDO=3.

• The subscript i indicates a grade crossing.

• Yi is the variable indicating accident type (fatal, injury or PDO).

• βs are the vectors of coefficient estimates.

• β2 is the coefficient estimate vector for probability of injury accident relative to fatal, and
Part A of Table 5-1 contains the coefficient estimate values.

• β3 is the coefficient estimate vector for probability of PDO accident relative to fatal, and
Part B of Table 5-1 contains the coefficient estimate values.

• Xi is the vector of crossing traits that explain accident severity.

Pr(𝑌𝑌𝑖𝑖 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 |𝐴𝐴) =  
𝑒𝑒𝜷𝜷𝟐𝟐∙𝑿𝑿𝒊𝒊

1 + ∑ 𝑒𝑒𝜷𝜷𝒌𝒌∙𝑿𝑿𝒊𝒊3
𝑘𝑘=1

Pr(𝑌𝑌𝑖𝑖 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 |𝐴𝐴) =  
𝑒𝑒𝜷𝜷𝟐𝟐∙𝑿𝑿𝒊𝒊

1 + ∑ 𝑒𝑒𝜷𝜷𝒌𝒌∙𝑿𝑿𝒊𝒊3
𝑘𝑘=1
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The following chart shows forecast severity for 50 accidents with the new model: 

Figure 5-1. Severity Predictions for 50 Crossings with the New Model 
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6. Validation

The section presents validations for the new model (estimated with the ZINB and EB methods). 
Note here that the term “prediction” means the expected value of accidents at the crossing. In 
general, accidents are rare and the (annualized) expected value of accidents at a crossing will be 
a real value between 0 and 1. A non-zero accident count will be larger in most cases than the 
expected value of accidents at a crossing, which reflects the fact that the observed count in a 
previous year is not expected to repeat frequently in subsequent years.  
The first validation compares cumulative predicted accidents by the new model and the APS 
with the actual risk as measured by accident counts.  
The second validation shows the predicted accidents for the new model and the APS for 
crossings grouped by accident count.  
The third comparison examines the model results (the new model and APS) for different 
groupings of high-risk crossings and shows the results in a chart. In this case, researchers 
counted accidents at the 50 highest-risk crossings (and then at the subsequent groupings of 
highest-risk crossings). The better of the two models will predict accidents at the groupings of 
crossings that is closer to the actual accident counts. 
For the severity model, this report shows comparisons of the model performance with that of the 
APS. 

6.1 Accident Prediction – Cumulative Risk 
For this validation we order the grade crossings from high risk to low risk (according to total 
accidents in 5-year history). The y-axis on the charts below shows the actual cumulative risk and 
the predicted risk with each model. The better model is the one that tracks closer to the actual 
cumulative risk. 
The four charts below represent two cases and two periods. The first case displays cumulative 
accident count and predictions for all crossings in the estimation sample (which includes 94,029 
crossings). The second case focuses on the crossings with non-zero accidents. The first period is 
the estimation period 2014–2018. The second period is the following year, which covers 5-year 
accidents from 2015–2019. 
The vertical line indicates the boundary between those crossings with non-zero accidents in the 
period (to the left of the line) and those with zero accidents in the period (to the right of the line). 
Figures 6-1 and 6-2 show the counts and predictions, ordered from high to low risk, for the 
complete set of crossings in the estimation sample. Figure 6-1 is for the period 2014–2018. 
Figure 6-2 is for the period 2015–2019. 
Figures 6-3 and 6-4 show the same chart data as Figures 6-1 and 6-2, but limit the data displayed 
to those crossings with non-zero accident history. 
The charts demonstrate that the new model was the better predictor of accident risk than the 
APS. 
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Figure 6-1. Model Comparison (2014–2018, all crossings in sample) 

Figure 6-2. Model Comparison (2015–2019, all crossings in sample) 
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Figure 6-3. Model Comparison (2014–2018, crossings in sample with non-zero accidents) 

Figure 6-4. Model Comparison (2015–2019, crossings in sample with non-zero accidents) 
On the riskiest crossings, the new model (ZINB+EB) predicted cumulative accident risk much 
better than APS.  
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6.2 Accident Prediction – Risk at Crossings by Accident Count Groups 
In the second validation, researchers grouped the crossings by the number of accidents in the 5-
year history. The chart shows the number of accidents in the grouping on the x-axis 
The orange square markers show mean predicted accidents with the APS given traits at the 
crossings with the specified accident history (shown on the x-axis). The square blue markers 
show mean predicted accidents with the new model. The lines below and above the markers 
indicate the 10th and 90th percentiles, respectively. The lines also indicate the bounds of the 80 
percent confidence interval of the prediction for crossings in the period. 
For example, in Figure 6-5 below (displaying the period 2014–2018) at crossings having three 
accidents the new model predicted between 1.6 and 2.0 accidents. The APS predicted 0.5 to 1.4. 
The new model better predicted the crashes at crossings for each level of accident risk than the 
APS. 
Figure 6-6 shows the results for the period 2015–2019. 

Figure 6-5. Model Comparison, Accident Counts, and Predictions (2014–2018) 
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Figure 6-6. Model Comparison, Accident Counts, and Predictions (2014–2018) 

Figure 6-7. Model Comparison, Accident Counts, and Predictions (2015–2019) 
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6.3 Accident Prediction – Accident Risk for Groups of High-Risk Crossings 
The third validation examines the model results (APS and new model) for groupings of high-risk 
crossings and shows the results in a chart. The better of the two models will predict accidents at 
each grouping of crossings that is closer to the actual accident counts. 
Crossings in the estimation sample were ordered by decreasing risk, and then divided into groups 
of 50. In the figure below, the x-axis shows groupings 1 to 20 (20 groups of 50 equals total of 
1,000). The y-axis shows the actual and predicted crossings by model (new model and APS) for 
each grouping. 
For each grouping, the new model performed better than the APS. For the top 1,000 high-risk 
crossings in 2014–2018 the accident count was 2,578 accidents. The APS predicted 791.3 
accidents while the new model predicted 1,518.0 accidents at these 1,000 high-risk crossings. 

Figure 6-8. Comparison of Predictions for Riskiest Crossings 

6.4 Accident Severity – Model Comparisons 
The table below shows the predicted accident severity for all accidents and by each accident type 
in the severity estimation sample. 
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Table 6-1. Predicted Severity (Percent of Total) by the New Model and APS 

With the new model, the aggregate percentage of accidents of each accident type exactly equaled 
the percentages in the sample (as expected). The APS predictions in the aggregate diverged 
somewhat from the sample data; for example, APS predicted the percent of fatal accidents to be 
half of the actual percentage. 
An indicator of the predictive performance of the severity model is to estimate the predicted 
percentage of a severity category while only considering those accidents in that category. That 
value should well exceed the percentage of a severity category when considering all accidents. 
Table 6-1 shows that predicted fatal accidents with the new model increased from a mean of 13.7 
percent for all accidents to 18.7 (a 36 percent increase).  When considering only accidents that 
were actually fatal. The comparable change with APS was 6.9 to 7.2 (a 4 percent increase). 
Overall, the new model performed better, with more significant movements in the correct 
direction when restricting to accidents of a particular type. 
Figures 6-8 and 6-9 below show boxplot charts of predicted accident severities for the new 
model and APS. 

For Accidents of Severity Type 

All Accidents Fatal Injury PDO 

New Model 
Predictions 

Fatal 13.7 18.7 13.1 12.9 

Injury 28.4 27.3 28.4 28.0 

PDO 58.2 54.0 58.4 59.1 

APS 
Predictions 

Fatal 6.9 7.2 6.9 6.9 

Injury 27.3 26.9 27.4 27.4 

PDO 65.7 65.9 65.6 65.7 
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Figure 6-9 Distribution of Predicted Accident Severities with the New Model 

Figure 6-10. Distribution of Predicted Accident Severities with APS 
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The two charts indicate: 

• The mean value from APS for fatal was about half that of the new model, while the
means for injury and PDO accidents were similar.

• The new model had a higher variance for the fatal and PDO categories, with smaller
variance for the injury category. (Standard deviations were 0.08182, 0.02986, and
0.07511 for fatal, injury, and PDO, respectively.)

• APS had a small variance for fatal, somewhat larger for injury, and a bit larger still for
PDO. (Standard deviations were 0.0208, 0.03704, and 0.0455 for fatal, injury, and PDO,
respectively.)

• APS had more and more unbalanced outliers. The injury category skewed downward, and
the PDO category skewed up. The table below shows a summary of the skewness values:

Table 6-2. Summary of Severity Category Skewness by Model 

New Model APS 

Fatal 0.3132 0.5734 

Injury 0.2782 -0.9523

PDO 0.4544 0.6588 
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7. Conclusion

The preliminary data review indicates that a new model could replace the APS based on the key 
drivers of exposure and grade crossing warning device type. In other words, the data show that 
risk increases with exposure and more protective warning device type reduces risk. 
Other findings include: 

• There is justification for a single model with category of warning device type as a
variable rather than separate models for each of the three warning device type categories.

• Grade crossings that are public, not closed, not grade separated, and that have non-
missing, non-erroneous values for exposure and warning device type, number 105,377
nationally. In the period 2014–2018 there were 8,467 accidents at these grade crossings.

• An aggregate analysis of these grade crossings showed that relative to a passive crossing,
a lights crossing had 73 percent less risk per exposure. A gated crossing had 63 percent
less risk per exposure than a lights crossing.

• The findings of the above analysis indicate a functional form with exposure, warning
device type, and other grade crossing characteristics.

• The analysis indicates additional variables that are likely to explain accident occurrence:
grade crossing is in rural or urban area, maximum timetable speed, and grade crossing
surface types.

• Model estimation using ZINB regression yielded parameters of the expected sign and
magnitude, and had strong statistical significance.

• Including the number of daily trains and the AADT at the crossing, which are
components of the exposure metric, improved the regression results as indicated by the
AIC.

• The EB method accounts for accident history while correcting for “regression to the
mean” bias. Adjusted results with EB produced predictions that more closely track the
actual counts than did the APS adjustment process for accident history.

• The new model severity component determined the probabilities that an accident would
be of one of three severity types: fatal, injury or PDO.

• The severity component of the new model was derived using multinomial logistic
regression on the accidents in the 6-year period 2014–2019.

• In the period there were 11,131 accidents at public crossings. Of these, the crossings
where these accidents occurred had non-missing, non-erroneous data for 9,870 grade
crossings. The accidents at these crossings were included in the severity model
estimation.

• The multinomial logistic regression showed that the best results were obtained with
explanatory variables: rural or urban, maximum time table speed, number of daily trains,
and whether a crossing has a lights warning device.
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• Validations showed that the new model performed better than the APS by multiple
measures.



50 

8. References

1. Farr, E.H. (1987). Summary of the DOT Rail-Highway Crossing Resource Allocation
Procedure – Revisited [DOT/FAR/OS-87/05].

2. Hauer, E. (2015). The Art of Regression Modeling in Road Safety. Springer
3. Hauer, E. (2001). Overdispersion in modeling accidents on road sections and in

Empirical Bayes estimation. Accident Analysis and Prevention 33, 799–808.
4. Hauer, E. (2004). Statistical Safety Modeling. Transportation Research Record 1897.

Washington, DC: National Academies Press, 81–87.
5. American Association of State Highway and Transportation Officials. (2010). Highway

Safety Manual, 1st edition.
6. Brod, D., Weisbrod, G., Moses, S.B., Gillen, D., & Martland, C.D. (2013)

Comprehensive Costs of Highway-Rail Grade Crossing Crashes. NCHRP Report #755.
Transportation Research Board.

7. Federal Railroad Administration. (2019). GradeDec.Net Reference Manual.
8. Mironer, M., Coltman, M. & McCown, R. (2000). Assessment of Risks for High-Speed

Rail Grade Crossings on the Empire Corridor [DOT-Volpe-FRA-00-03]. Washington,
DC: U.S. Department of Transportation.

9. Elvik, R. & Vaa, T. (2014). Handbook of Road Safety Measures. Oxford, UK: Elsevier.
10. R Core Team. (2020). R: A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

https://www.r-project.org/


51 

Appendix A. Interpreting Regression Outputs 

A regression analysis is a set of statistical processes for estimating the relationships between a 
dependent variable and one or more independent variables. A dataset contains a number of 
observations for each variable. 
The independent variable is often called the left-hand side (LHS) variable because it is written to 
the left of the equals sign. The dependent variables (also called explanatories) are the right-hand 
side (RHS) variables. 
In regression analysis, the analyst develops a model linking the LHS with RHS variables and 
“runs” a regression. A statistical program examines the dataset and finds the values of model 
coefficients that meet optimization criteria.33 
The regression output table contains general statistics along with coefficient estimates and 
statistics. 
The following describes the columns in the regression output table that relate to the coefficient 
estimates: 

Column Name Column Description 

Variable Each row contains the name of a model variable. If the model has a constant, 
the row will usually say “constant” or “intercept,” depending upon the 
software used. 

Estimate The estimate of the variable model coefficient (in this report, coefficients are 
subscripted and shown in model equations as lowercase Greek letters β 
(beta) and γ (gamma) 

Std. Error The standard deviation of the coefficient estimate 

z-value This is the estimate divided by the standard error. 

Pr(>|z|) 
(p-value) 

In statistical significance testing, the p-value is the largest probability of 
obtaining test results at least as extreme as the results actually observed, 
under the assumption that the null hypothesis is correct (i.e., assuming the 
coefficient is actually 0). This is equivalent to the probability of falsely 
rejecting the null hypothesis (also called a Type I error). 

33 The two broad classes of regression techniques are least squares (LS) and maximum likelihood estimation (MLE). 
With LS, the regression minimizes the sum of squared residuals (“residuals” are the differences between the LHS 
values and the “fitted” calculated values of the model). With MLE, the regression seeks the point of maximum of a 
likelihood function that is constructed from all the data observations. The datasets under consideration will usually 
determine which technique is most appropriate. 
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Column Name Column Description 

Confidence 
Level 

This is the confidence level of the parameter estimate. It is one minus the p-
value (i.e., if the p-value is .01, then the confidence level is 0.99 – or, 99.0 
percent). 

The general statistics include descriptive statistics of the regression and its residuals. This study 
examines the AIC, which enables model quality comparison and whose value is least for the 
better model specification with the given set of data.
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Appendix B. Application of the New Model 

The APS enables risk ranking of grade crossings (in a corridor or region). However, it cannot 
inform when two grade crossings with similar risk scores (e.g., predicted annual accidents) 
should be treated the same or differently. The new model provides descriptive statistics of the 
population of grade crossings, and these can be used to determine if scores are close enough to 
warrant same or different treatment.34 
For example, suppose we have two grade crossings A and B, and the new model estimates they 
have predicted annual accidents of 0.21 and 0.26, respectively. From the analysis of data in 
developing the model, we know that: 

1. Mean value of 5-year accidents for the population of grade crossings is E{μ} = 0.08319
2. The variance of 5-year accidents for the population of grade crossings is V{k} =

0.1220627.
3. The standard deviation of 5-year accidents for the population of grade crossings is:

Since the standard deviation is for 5-year accidents, divide by 5 for the standard deviation of 
predicted annual accidents: 

Crossing A has predicted annual accidents of 0.21, then adding the standard deviation to the 
value 0.21 + 0.03945124 = 0.24945124. Crossing B has predicted annual accidents of 0.26, 
which is greater than the previous value and outside a band of one standard deviation from the 
mean value of predicted annual accidents of A. We would conclude that the predicted annual 
accidents of the two crossings differ significantly and, therefore, the two warrant different 
treatment based on the new model. 

34 Following Hauer (2015) Chapter 2, “A Safety Performance Function for Real Populations.” 
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Abbreviations and Acronyms 

AADT Average Annual Daily Traffic 
AASHTO American Association of State Highway and Transportation Officials 
AIC Akaike Information Criterion (a measure of the relative quality of a model for a given 

set of data) 
APS Accident Prediction and Severity 
CMF Crash Modification Factor (a safety countermeasure’s ability to reduce crashes and 

crash severity) 
CFR Code of Federal Regulations 
CWT Constant Warning Time (device at grade crossings with active warning devices that 

ensures the time between initial warning and a train’s arrival at the roadway is 
constant, regardless of the speed of the train) 

DOT Department of Transportation 
EB Empirical Bayes (procedure for statistical inference in which prior distributions are 

derived from data)  
FRA Federal Railroad Administration 
GCIS Grade Crossing Inventory System 
GX Grade crossing (used in this document’s figures) 
HSR High-Speed Rail 
MLE Maximum Likelihood Estimation (a class of model estimation procedures) 
MNL Multinomial Logistic (a regression analysis method) 
NB Negative Binomial (a probability distribution) 
PDO Property Damage Only (a severity type of train-highway vehicle accident at a grade 

crossing) 
SPF Safety Performance Function (a function for evaluating the safety of a transportation 

facility, or population of facilities, from a set of facility traits and accident history) 
TRB Transportation Research Board 
Volpe Volpe National Transportation Systems Center 
ZINB Zero-Inflated Negative Binomial (a regression analysis method) 
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